題目描述(中等难度)

每个数字对应一个字母,给一串数字,问有几种解码方式。例如 226 可以有三种,2|2|6,22|6,2|26。

解法一 递归

很容易想到递归去解决,将大问题化作小问题。

比如 232232323232。

对于第一个字母我们有两种划分方式。

2|32232323232 和 23|2232323232

所以,如果我们分别知道了上边划分的右半部分 32232323232 的解码方式是 ans1 种,2232323232 的解码方式是 ans2 种,那么整体 232232323232 的解码方式就是 ans1 + ans2 种。可能一下子,有些反应不过来,可以看一下下边的类比。

假如从深圳到北京可以经过武汉上海两条路,而从武汉到北京有 8 条路,从上海到北京有 6 条路。那么从深圳到北京就有 8 + 6 = 14 条路。

public int numDecodings(String s) { return getAns(s, 0); } private int getAns(String s, int start) { //划分到了最后返回 1 if (start == s.length()) { return 1; } //开头是 0,0 不对应任何字母,直接返回 0 if (s.charAt(start) == '0') { return 0; } //得到第一种的划分的解码方式 int ans1 = getAns(s, start + 1); int ans2 = 0; //判断前两个数字是不是小于等于 26 的 if (start < s.length() - 1) { int ten = (s.charAt(start) - '0') * 10; int one = s.charAt(start + 1) - '0'; if (ten + one <= 26) { ans2 = getAns(s, start + 2); } } return ans1 + ans2; } 

时间复杂度:

空间复杂度:

解法二 递归 memoization

解法一的递归中,走完左子树,再走右子树会把一些已经算过的结果重新算,所以我们可以用 memoization 技术,就是算出一个结果很就保存,第二次算这个的时候直接拿出来就可以了。

public int numDecodings(String s) { HashMap<Integer, Integer> memoization = new HashMap<>(); return getAns(s, 0, memoization); } private int getAns(String s, int start, HashMap<Integer, Integer> memoization) { if (start == s.length()) { return 1; } if (s.charAt(start) == '0') { return 0; } //判断之前是否计算过 int m = memoization.getOrDefault(start, -1); if (m != -1) { return m; } int ans1 = getAns(s, start + 1, memoization); int ans2 = 0; if (start < s.length() - 1) { int ten = (s.charAt(start) - '0') * 10; int one = s.charAt(start + 1) - '0'; if (ten + one <= 26) { ans2 = getAns(s, start + 2, memoization); } } //将结果保存 memoization.put(start, ans1 + ans2); return ans1 + ans2; } 

解法三 动态规划

同样的,递归就是压栈压栈压栈,出栈出栈出栈的过程,我们可以利用动态规划的思想,省略压栈的过程,直接从 bottom 到 top。

用一个 dp 数组, dp [ i ] 代表字符串 s [ i, s.len-1 ],也就是 s 从 i 开始到结尾的字符串的解码方式。

这样和递归完全一样的递推式。

如果 s [ i ] 和 s [ i + 1 ] 组成的数字小于等于 26,那么

dp [ i ] = dp[ i + 1 ] + dp [ i + 2 ]

public int numDecodings(String s) { int len = s.length(); int[] dp = new int[len + 1]; dp[len] = 1; //将递归法的结束条件初始化为 1  //最后一个数字不等于 0 就初始化为 1 if (s.charAt(len - 1) != '0') { dp[len - 1] = 1; } for (int i = len - 2; i >= 0; i--) { //当前数字时 0 ,直接跳过,0 不代表任何字母 if (s.charAt(i) == '0') { continue; } int ans1 = dp[i + 1]; //判断两个字母组成的数字是否小于等于 26 int ans2 = 0; int ten = (s.charAt(i) - '0') * 10; int one = s.charAt(i + 1) - '0'; if (ten + one <= 26) { ans2 = dp[i + 2]; } dp[i] = ans1 + ans2; } return dp[0]; } 

接下来就是,动态规划的空间优化了,例如5题10题53题72题等等都是同样的思路。都是注意到一个特点,当更新到 dp [ i ] 的时候,我们只用到 dp [ i + 1] 和 dp [ i + 2],之后的数据就没有用了。所以我们不需要 dp 开 len + 1 的空间。

简单的做法,我们只申请 3 个空间,然后把 dp 的下标对 3 求余就够了。

public int numDecodings4(String s) { int len = s.length(); int[] dp = new int[3]; dp[len % 3] = 1; if (s.charAt(len - 1) != '0') { dp[(len - 1) % 3] = 1; } for (int i = len - 2; i >= 0; i--) { if (s.charAt(i) == '0') { dp[i % 3] = 0; //这里很重要,因为空间复用了,不要忘记归零 continue; } int ans1 = dp[(i + 1) % 3]; int ans2 = 0; int ten = (s.charAt(i) - '0') * 10; int one = s.charAt(i + 1) - '0'; if (ten + one <= 26) { ans2 = dp[(i + 2) % 3]; } dp[i % 3] = ans1 + ans2; } return dp[0]; } 

然后,如果多考虑以下,我们其实并不需要 3 个空间,我们只需要 2 个就够了,只需要更新的时候,指针移动一下,代码如下。

public int numDecodings5(String s) { int len = s.length(); int end = 1; int cur = 0; if (s.charAt(len - 1) != '0') { cur = 1; } for (int i = len - 2; i >= 0; i--) { if (s.charAt(i) == '0') { end = cur;//end 前移 cur = 0; continue; } int ans1 = cur; int ans2 = 0; int ten = (s.charAt(i) - '0') * 10; int one = s.charAt(i + 1) - '0'; if (ten + one <= 26) { ans2 = end; } end = cur; //end 前移 cur = ans1 + ans2; } return cur; } 

从递归,到动态规划,到动态规划的空间复杂度优化,已经很多这样的题了,很经典。

results matching ""

    No results matching ""