View source on GitHub |
Fills empty rows in the input 2-D SparseTensor with a default value.
tf.sparse.fill_empty_rows( sp_input, default_value, name=None ) This op adds entries with the specified default_value at index [row, 0] for any row in the input that does not already have a value.
For example, suppose sp_input has shape [5, 6] and non-empty values:
[0, 1]: a [0, 3]: b [2, 0]: c [3, 1]: d Rows 1 and 4 are empty, so the output will be of shape [5, 6] with values:
[0, 1]: a [0, 3]: b [1, 0]: default_value [2, 0]: c [3, 1]: d [4, 0]: default_value Note that the input may have empty columns at the end, with no effect on this op.
The output SparseTensor will be in row-major order and will have the same shape as the input.
This op also returns an indicator vector such that
empty_row_indicator[i] = True iff row i was an empty row. Args | |
|---|---|
sp_input | A SparseTensor with shape [N, M]. |
default_value | The value to fill for empty rows, with the same type as sp_input. |
name | A name prefix for the returned tensors (optional) |
Raises | |
|---|---|
TypeError | If sp_input is not a SparseTensor. |
View source on GitHub