![]() |
Calculates how often predictions match one-hot labels.
Inherits From: MeanMetricWrapper
, Mean
, Metric
tf.keras.metrics.CategoricalAccuracy( name='categorical_accuracy', dtype=None )
You can provide logits of classes as y_pred
, since argmax of logits and probabilities are same.
This metric creates two local variables, total
and count
that are used to compute the frequency with which y_pred
matches y_true
. This frequency is ultimately returned as categorical accuracy
: an idempotent operation that simply divides total
by count
.
y_pred
and y_true
should be passed in as vectors of probabilities, rather than as labels. If necessary, use ops.one_hot
to expand y_true
as a vector.
If sample_weight
is None
, weights default to 1. Use sample_weight
of 0 to mask values.
Args | |
---|---|
name | (Optional) string name of the metric instance. |
dtype | (Optional) data type of the metric result. |
Example:
m = keras.metrics.CategoricalAccuracy()
m.update_state([[0, 0, 1], [0, 1, 0]], [[0.1, 0.9, 0.8],
[0.05, 0.95, 0]])
m.result()
0.5
m.reset_state()
m.update_state([[0, 0, 1], [0, 1, 0]], [[0.1, 0.9, 0.8],
[0.05, 0.95, 0]],
sample_weight=[0.7, 0.3])
m.result()
0.3
Usage with compile()
API:
model.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=[keras.metrics.CategoricalAccuracy()])
Attributes | |
---|---|
dtype | |
variables |
Methods
add_variable
add_variable( shape, initializer, dtype=None, aggregation='sum', name=None )
add_weight
add_weight( shape=(), initializer=None, dtype=None, name=None )
from_config
@classmethod
from_config( config )
get_config
get_config()
Return the serializable config of the metric.
reset_state
reset_state()
Reset all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
result
result()
Compute the current metric value.
Returns | |
---|---|
A scalar tensor, or a dictionary of scalar tensors. |
stateless_reset_state
stateless_reset_state()
stateless_result
stateless_result( metric_variables )
stateless_update_state
stateless_update_state( metric_variables, *args, **kwargs )
update_state
update_state( y_true, y_pred, sample_weight=None )
Accumulate statistics for the metric.
__call__
__call__( *args, **kwargs )
Call self as a function.