tf.dynamic_partition

Partitions data into num_partitions tensors using indices from partitions.

For each index tuple js of size partitions.ndim, the slice data[js, ...] becomes part of outputs[partitions[js]]. The slices with partitions[js] = i are placed in outputs[i] in lexicographic order of js, and the first dimension of outputs[i] is the number of entries in partitions equal to i. In detail,

 outputs[i].shape = [sum(partitions == i)] + data.shape[partitions.ndim:] outputs[i] = pack([data[js, ...] for js if partitions[js] == i]) 

data.shape must start with partitions.shape.

For example:

 # Scalar partitions. partitions = 1 num_partitions = 2 data = [10, 20] outputs[0] = [] # Empty with shape [0, 2] outputs[1] = [[10, 20]] # Vector partitions. partitions = [0, 0, 1, 1, 0] num_partitions = 2 data = [10, 20, 30, 40, 50] outputs[0] = [10, 20, 50] outputs[1] = [30, 40] 

See dynamic_stitch for an example on how to merge partitions back.

  • InvalidArgumentError in following cases:
  • If partitions is not in range [0, num_partiions)
  • If partitions.shape does not match prefix of data.shape argument.

data A Tensor.
partitions A Tensor of type int32. Any shape. Indices in the range [0, num_partitions).
num_partitions An int that is >= 1. The number of partitions to output.
name A name for the operation (optional).

A list of num_partitions Tensor objects with the same type as data.