View source on GitHub |
Long Short-Term Memory layer - Hochreiter 1997.
Inherits From: RNN, Layer, Operation
tf.keras.layers.LSTM( units, activation='tanh', recurrent_activation='sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, seed=None, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False, use_cudnn='auto', **kwargs ) Used in the notebooks
| Used in the guide | Used in the tutorials |
|---|---|
Based on available runtime hardware and constraints, this layer will choose different implementations (cuDNN-based or backend-native) to maximize the performance. If a GPU is available and all the arguments to the layer meet the requirement of the cuDNN kernel (see below for details), the layer will use a fast cuDNN implementation when using the TensorFlow backend. The requirements to use the cuDNN implementation are:
activation==tanhrecurrent_activation==sigmoiddropout== 0 andrecurrent_dropout== 0unrollisFalseuse_biasisTrue- Inputs, if use masking, are strictly right-padded.
- Eager execution is enabled in the outermost context.
For example:
inputs = np.random.random((32, 10, 8))lstm = keras.layers.LSTM(4)output = lstm(inputs)output.shape(32, 4)lstm = keras.layers.LSTM(4, return_sequences=True, return_state=True)whole_seq_output, final_memory_state, final_carry_state = lstm(inputs)whole_seq_output.shape(32, 10, 4)final_memory_state.shape(32, 4)final_carry_state.shape(32, 4)
Args | |
|---|---|
units | Positive integer, dimensionality of the output space. |
activation | Activation function to use. Default: hyperbolic tangent (tanh). If you pass None, no activation is applied (ie. "linear" activation: a(x) = x). |
recurrent_activation | Activation function to use for the recurrent step. Default: sigmoid (sigmoid). If you pass None, no activation is applied (ie. "linear" activation: a(x) = x). |
use_bias | Boolean, (default True), whether the layer should use a bias vector. |
kernel_initializer | Initializer for the kernel weights matrix, used for the linear transformation of the inputs. Default: "glorot_uniform". |
recurrent_initializer | Initializer for the recurrent_kernel weights matrix, used for the linear transformation of the recurrent state. Default: "orthogonal". |
bias_initializer | Initializer for the bias vector. Default: "zeros". |
unit_forget_bias | Boolean (default True). If True, add 1 to the bias of the forget gate at initialization. Setting it to True will also force bias_initializer="zeros". This is recommended in Jozefowicz et al. |
kernel_regularizer | Regularizer function applied to the kernel weights matrix. Default: None. |
recurrent_regularizer | Regularizer function applied to the recurrent_kernel weights matrix. Default: None. |
bias_regularizer | Regularizer function applied to the bias vector. Default: None. |
activity_regularizer | Regularizer function applied to the output of the layer (its "activation"). Default: None. |
kernel_constraint | Constraint function applied to the kernel weights matrix. Default: None. |
recurrent_constraint | Constraint function applied to the recurrent_kernel weights matrix. Default: None. |
bias_constraint | Constraint function applied to the bias vector. Default: None. |
dropout | Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. Default: 0. |
recurrent_dropout | Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Default: 0. |
seed | Random seed for dropout. |
return_sequences | Boolean. Whether to return the last output in the output sequence, or the full sequence. Default: False. |
return_state | Boolean. Whether to return the last state in addition to the output. Default: False. |
go_backwards | Boolean (default: False). If True, process the input sequence backwards and return the reversed sequence. |
stateful | Boolean (default: False). If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch. |
unroll | Boolean (default False). If True, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences. |
use_cudnn | Whether to use a cuDNN-backed implementation. "auto" will attempt to use cuDNN when feasible, and will fallback to the default implementation if not. |
Methods
from_config
@classmethodfrom_config( config )
Creates a layer from its config.
This method is the reverse of get_config, capable of instantiating the same layer from the config dictionary. It does not handle layer connectivity (handled by Network), nor weights (handled by set_weights).
| Args | |
|---|---|
config | A Python dictionary, typically the output of get_config. |
| Returns | |
|---|---|
| A layer instance. |
get_initial_state
get_initial_state( batch_size ) inner_loop
inner_loop( sequences, initial_state, mask, training=False ) reset_state
reset_state() reset_states
reset_states() symbolic_call
symbolic_call( *args, **kwargs )
View source on GitHub