tf.nn.ctc_greedy_decoder
Stay organized with collections Save and categorize content based on your preferences.
Performs greedy decoding on the logits given in input (best path).
tf.nn.ctc_greedy_decoder( inputs, sequence_length, merge_repeated=True, blank_index=None )
Given a tensor as inputs
, the blank_index
parameter defines the class index of the blank symbol.
For example:
If blank_index
is equal to 1:
inf = float("inf")
logits = tf.constant([[[ 0., -inf, -inf],
[ -2.3, -inf, -0.1]],
[[ -inf, -0.5, -inf],
[ -inf, -inf, -0.1]],
[[ -inf, -inf, -inf],
[ -0.1, -inf, -2.3]]])
seq_lens = tf.constant([2, 3])
outputs = tf.nn.ctc_greedy_decoder(
logits,
seq_lens,
blank_index=1)
Notes:
- Unlike
ctc_beam_search_decoder
, ctc_greedy_decoder
considers blanks as regular elements when computing the probability of a sequence. - Default
blank_index
is (num_classes - 1)
, unless overriden.
If merge_repeated
is True
, merge repeated classes in output. This means that if consecutive logits' maximum indices are the same, only the first of these is emitted. The sequence A B B * B * B
(where '*' is the blank label) becomes
A B B B
if merge_repeated=True
. A B B B B
if merge_repeated=False
.
Args |
inputs | 3-D float Tensor sized [max_time, batch_size, num_classes] . The logits. |
sequence_length | 1-D int32 vector containing sequence lengths, having size [batch_size] . |
merge_repeated | Boolean. Default: True. |
blank_index | (Optional). Default: num_classes - 1 . Define the class index to use for the blank label. Negative values will start from num_classes, ie, -1 will reproduce the ctc_greedy_decoder behavior of using num_classes - 1 for the blank symbol, which corresponds to the default. |
Returns |
A tuple (decoded, neg_sum_logits) where |
decoded | A single-element list. decoded[0] is an SparseTensor containing the decoded outputs s.t.: decoded.indices : Indices matrix (total_decoded_outputs, 2) . The rows store: [batch, time] . decoded.values : Values vector, size (total_decoded_outputs) . The vector stores the decoded classes. decoded.dense_shape : Shape vector, size (2) . The shape values are: [batch_size, max_decoded_length]
|
neg_sum_logits | A float matrix (batch_size x 1) containing, for the sequence found, the negative of the sum of the greatest logit at each timeframe. |