View source on GitHub |
Searches for where a value would go in a sorted sequence.
tf.searchsorted( sorted_sequence, values, side='left', out_type=tf.dtypes.int32, name=None ) This is not a method for checking containment (like python in).
The typical use case for this operation is "binning", "bucketing", or "discretizing". The values are assigned to bucket-indices based on the edges listed in sorted_sequence. This operation returns the bucket-index for each value.
edges = [-1, 3.3, 9.1, 10.0]values = [0.0, 4.1, 12.0]tf.searchsorted(edges, values).numpy()array([1, 2, 4], dtype=int32)
The side argument controls which index is returned if a value lands exactly on an edge:
seq = [0, 3, 9, 10, 10]values = [0, 4, 10]tf.searchsorted(seq, values).numpy()array([0, 2, 3], dtype=int32)tf.searchsorted(seq, values, side="right").numpy()array([1, 2, 5], dtype=int32)
The axis is not settable for this operation. It always operates on the innermost dimension (axis=-1). The operation will accept any number of outer dimensions. Here it is applied to the rows of a matrix:
sorted_sequence = [[0., 3., 8., 9., 10.],[1., 2., 3., 4., 5.]]values = [[9.8, 2.1, 4.3],[0.1, 6.6, 4.5, ]]tf.searchsorted(sorted_sequence, values).numpy()array([[4, 1, 2],[0, 5, 4]], dtype=int32)
Args | |
|---|---|
sorted_sequence | N-D Tensor containing a sorted sequence. |
values | N-D Tensor containing the search values. |
side | 'left' or 'right'; 'left' corresponds to lower_bound and 'right' to upper_bound. |
out_type | The output type (int32 or int64). Default is tf.int32. |
name | Optional name for the operation. |
Returns | |
|---|---|
An N-D Tensor the size of values containing the result of applying either lower_bound or upper_bound (depending on side) to each value. The result is not a global index to the entire Tensor, but the index in the last dimension. |
Raises | |
|---|---|
ValueError | If the last dimension of sorted_sequence >= 2^31-1 elements. If the total size of values exceeds 2^31 - 1 elements. If the first N-1 dimensions of the two tensors don't match. |
View source on GitHub