![]() |
Represents a backend-agnostic variable in Keras.
tf.keras.Variable( initializer, shape=None, dtype=None, trainable=True, autocast=True, aggregation='mean', name=None )
A Variable
acts as a container for state. It holds a tensor value and can be updated. With the JAX backend, variables are used to implement "functionalization", the pattern of lifting stateful operations out of a piece of computation to turn it into a stateless function.
Examples:
Initializing a Variable
with a NumPy array:
import numpy as np import keras initial_array = np.ones((3, 3)) variable_from_array = keras.Variable(initializer=initial_array)
Using a Keras initializer to create a Variable
:
from keras.src.initializers import Ones variable_from_initializer = keras.Variable( initializer=Ones(), shape=(3, 3), dtype="float32" )
Updating the value of a Variable
:
new_value = np.zeros((3, 3), dtype="float32") variable_from_array.assign(new_value)
Marking a Variable
as non-trainable:
non_trainable_variable = keras.Variable( initializer=np.ones((3, 3), dtype="float32"), trainable=False )
Methods
assign
assign( value )
assign_add
assign_add( value )
assign_sub
assign_sub( value )
numpy
numpy()
__abs__
__abs__()
__add__
__add__( other )
__and__
__and__( other )
__array__
__array__( dtype=None )
__bool__
__bool__()
__eq__
__eq__( other )
Return self==value.
__floordiv__
__floordiv__( other )
__ge__
__ge__( other )
Return self>=value.
__getitem__
__getitem__( idx )
__gt__
__gt__( other )
Return self>value.
__invert__
__invert__()
__le__
__le__( other )
Return self<=value.
__lt__
__lt__( other )
Return self<value.
__matmul__
__matmul__( other )
__mod__
__mod__( other )
__mul__
__mul__( other )
__ne__
__ne__( other )
Return self!=value.
__neg__
__neg__()
__or__
__or__( other )
__pos__
__pos__()
__pow__
__pow__( other )
__radd__
__radd__( other )
__rand__
__rand__( other )
__rfloordiv__
__rfloordiv__( other )
__rmatmul__
__rmatmul__( other )
__rmod__
__rmod__( other )
__rmul__
__rmul__( other )
__ror__
__ror__( other )
__rpow__
__rpow__( other )
__rsub__
__rsub__( other )
__rtruediv__
__rtruediv__( other )
__rxor__
__rxor__( other )
__sub__
__sub__( other )
__truediv__
__truediv__( other )
__xor__
__xor__( other )