![]() |
Optimization parameters for Adagrad + Momentum with TPU embeddings.
tf.tpu.experimental.embedding.AdagradMomentum( learning_rate: Union[float, Callable[[], float]] = 0.001, momentum: float = 0.0, use_nesterov: bool = False, exponent: float = 2, beta2: float = 1, epsilon: float = 1e-10, use_gradient_accumulation: bool = True, clip_weight_min: Optional[float] = None, clip_weight_max: Optional[float] = None, weight_decay_factor: Optional[float] = None, multiply_weight_decay_factor_by_learning_rate: Optional[bool] = None, slot_variable_creation_fn: Optional[SlotVarCreationFnType] = None, clipvalue: Optional[ClipValueType] = None, low_dimensional_packing_status: bool = False )
Pass this to tf.tpu.experimental.embedding.TPUEmbedding
via the optimizer
argument to set the global optimizer and its parameters:
embedding = tf.tpu.experimental.embedding.TPUEmbedding( ... optimizer=tf.tpu.experimental.embedding.AdagradMomentum(0.1))
This can also be used in a tf.tpu.experimental.embedding.TableConfig
as the optimizer parameter to set a table specific optimizer. This will override the optimizer and parameters for global embedding optimizer defined above:
table_one = tf.tpu.experimental.embedding.TableConfig( vocabulary_size=..., dim=..., optimizer=tf.tpu.experimental.embedding.AdagradMomentum(0.2)) table_two = tf.tpu.experimental.embedding.TableConfig( vocabulary_size=..., dim=...) feature_config = ( tf.tpu.experimental.embedding.FeatureConfig( table=table_one), tf.tpu.experimental.embedding.FeatureConfig( table=table_two)) embedding = tf.tpu.experimental.embedding.TPUEmbedding( feature_config=feature_config, batch_size=... optimizer=tf.tpu.experimental.embedding.AdagradMomentum(0.1))
In the above example, the first feature will be looked up in a table that has a learning rate of 0.2 while the second feature will be looked up in a table that has a learning rate of 0.1.
See 'tensorflow/core/protobuf/tpu/optimization_parameters.proto' for a complete description of these parameters and their impacts on the optimizer algorithm.
Methods
__eq__
__eq__( other: Any ) -> Union[Any, bool]
Return self==value.