tf.random.truncated_normal
Stay organized with collections Save and categorize content based on your preferences.
Outputs random values from a truncated normal distribution.
tf.random.truncated_normal( shape, mean=0.0, stddev=1.0, dtype=tf.dtypes.float32
, seed=None, name=None )
Used in the notebooks
The values are drawn from a normal distribution with specified mean and standard deviation, discarding and re-drawing any samples that are more than two standard deviations from the mean.
Examples:
tf.random.truncated_normal(shape=[2])
<tf.Tensor: shape=(2,), dtype=float32, numpy=array([..., ...], dtype=float32)>
tf.random.truncated_normal(shape=[2], mean=3, stddev=1, dtype=tf.float32)
<tf.Tensor: shape=(2,), dtype=float32, numpy=array([..., ...], dtype=float32)>
Args |
shape | A 1-D integer Tensor or Python array. The shape of the output tensor. |
mean | A 0-D Tensor or Python value of type dtype . The mean of the truncated normal distribution. |
stddev | A 0-D Tensor or Python value of type dtype . The standard deviation of the normal distribution, before truncation. |
dtype | The type of the output. Restricted to floating-point types: tf.half , tf.float , tf.double , etc. |
seed | A Python integer. Used to create a random seed for the distribution. See tf.random.set_seed for more information. |
name | A name for the operation (optional). |
Returns |
A tensor of the specified shape filled with random truncated normal values. |