Use this when your inputs are sparse, but you want to convert them to a dense representation (e.g., to feed to a DNN).
Args
categorical_column
A CategoricalColumn created by a categorical_column_with_* function. This column produces the sparse IDs that are inputs to the embedding lookup.
dimension
An integer specifying dimension of the embedding, must be > 0.
combiner
A string specifying how to reduce if there are multiple entries in a single row. Currently 'mean', 'sqrtn' and 'sum' are supported, with 'mean' the default. 'sqrtn' often achieves good accuracy, in particular with bag-of-words columns. Each of this can be thought as example level normalizations on the column. For more information, see tf.embedding_lookup_sparse.
initializer
A variable initializer function to be used in embedding variable initialization. If not specified, defaults to truncated_normal_initializer with mean 0.0 and standard deviation 1/sqrt(dimension).
ckpt_to_load_from
String representing checkpoint name/pattern from which to restore column weights. Required if tensor_name_in_ckpt is not None.
tensor_name_in_ckpt
Name of the Tensor in ckpt_to_load_from from which to restore the column weights. Required if ckpt_to_load_from is not None.
max_norm
If not None, embedding values are l2-normalized to this value.
trainable
Whether or not the embedding is trainable. Default is True.
use_safe_embedding_lookup
If true, uses safe_embedding_lookup_sparse instead of embedding_lookup_sparse. safe_embedding_lookup_sparse ensures there are no empty rows and all weights and ids are positive at the expense of extra compute cost. This only applies to rank 2 (NxM) shaped input tensors. Defaults to true, consider turning off if the above checks are not needed. Note that having empty rows will not trigger any error though the output result might be 0 or omitted.
Returns
DenseColumn that converts from sparse input.
Raises
ValueError
if dimension not > 0.
ValueError
if exactly one of ckpt_to_load_from and tensor_name_in_ckpt is specified.