![]() |
Calculates the number of true positives.
Inherits From: Metric
tf.keras.metrics.TruePositives( thresholds=None, name=None, dtype=None )
Used in the notebooks
Used in the tutorials |
---|
If sample_weight
is given, calculates the sum of the weights of true positives. This metric creates one local variable, true_positives
that is used to keep track of the number of true positives.
If sample_weight
is None
, weights default to 1. Use sample_weight
of 0 to mask values.
Example:
m = keras.metrics.TruePositives()
m.update_state([0, 1, 1, 1], [1, 0, 1, 1])
m.result()
2.0
m.reset_state()
m.update_state([0, 1, 1, 1], [1, 0, 1, 1], sample_weight=[0, 0, 1, 0])
m.result()
1.0
Attributes | |
---|---|
dtype | |
variables |
Methods
add_variable
add_variable( shape, initializer, dtype=None, aggregation='sum', name=None )
add_weight
add_weight( shape=(), initializer=None, dtype=None, name=None )
from_config
@classmethod
from_config( config )
get_config
get_config()
Return the serializable config of the metric.
reset_state
reset_state()
Reset all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
result
result()
Compute the current metric value.
Returns | |
---|---|
A scalar tensor, or a dictionary of scalar tensors. |
stateless_reset_state
stateless_reset_state()
stateless_result
stateless_result( metric_variables )
stateless_update_state
stateless_update_state( metric_variables, *args, **kwargs )
update_state
update_state( y_true, y_pred, sample_weight=None )
Accumulates the metric statistics.
Args | |
---|---|
y_true | The ground truth values. |
y_pred | The predicted values. |
sample_weight | Optional weighting of each example. Defaults to 1 . Can be a tensor whose rank is either 0, or the same rank as y_true , and must be broadcastable to y_true . |
__call__
__call__( *args, **kwargs )
Call self as a function.