![]() |
Normalizes along dimension axis
using an L2 norm. (deprecated arguments)
tf.math.l2_normalize( x, axis=None, epsilon=1e-12, name=None, dim=None )
Used in the notebooks
Used in the tutorials |
---|
For a 1-D tensor with axis = 0
, computes
output = x / sqrt(max(sum(x**2), epsilon))
For x
with more dimensions, independently normalizes each 1-D slice along dimension axis
.
1-D tensor example:
>>> x = tf.constant([3.0, 4.0]) >>> tf.math.l2_normalize(x).numpy() array([0.6, 0.8], dtype=float32)
2-D tensor example:
>>> x = tf.constant([[3.0], [4.0]]) >>> tf.math.l2_normalize(x, 0).numpy() array([[0.6], [0.8]], dtype=float32)
x = tf.constant([[3.0], [4.0]])
tf.math.l2_normalize(x, 1).numpy()
array([[1.],
[1.]], dtype=float32)
Returns | |
---|---|
A Tensor with the same shape as x . |