![]() |
Multiplies matrix a
by vector b
, producing a
* b
.
tf.linalg.matvec( a, b, transpose_a=False, adjoint_a=False, a_is_sparse=False, b_is_sparse=False, name=None )
Used in the notebooks
Used in the tutorials |
---|
The matrix a
must, following any transpositions, be a tensor of rank >= 2, with shape(a)[-1] == shape(b)[-1]
, and shape(a)[:-2]
able to broadcast with shape(b)[:-1]
.
Both a
and b
must be of the same type. The supported types are: float16
, float32
, float64
, int32
, complex64
, complex128
.
Matrix a
can be transposed or adjointed (conjugated and transposed) on the fly by setting one of the corresponding flag to True
. These are False
by default.
If one or both of the inputs contain a lot of zeros, a more efficient multiplication algorithm can be used by setting the corresponding a_is_sparse
or b_is_sparse
flag to True
. These are False
by default. This optimization is only available for plain matrices/vectors (rank-2/1 tensors) with datatypes bfloat16
or float32
.
For example:
# 2-D tensor `a` # [[1, 2, 3], # [4, 5, 6]] a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3]) # 1-D tensor `b` # [7, 9, 11] b = tf.constant([7, 9, 11], shape=[3]) # `a` * `b` # [ 58, 139] c = tf.linalg.matvec(a, b) # 3-D tensor `a` # [[[ 1, 2, 3], # [ 4, 5, 6]], # [[ 7, 8, 9], # [10, 11, 12]]] a = tf.constant(np.arange(1, 13, dtype=np.int32), shape=[2, 2, 3]) # 2-D tensor `b` # [[13, 14, 15], # [16, 17, 18]] b = tf.constant(np.arange(13, 19, dtype=np.int32), shape=[2, 3]) # `a` * `b` # [[ 86, 212], # [410, 563]] c = tf.linalg.matvec(a, b)
Raises | |
---|---|
ValueError | If transpose_a and adjoint_a are both set to True. |