![]() |
Print the specified inputs.
tf.print( *inputs, **kwargs )
Used in the notebooks
Used in the guide | Used in the tutorials |
---|---|
A TensorFlow operator that prints the specified inputs to a desired output stream or logging level. The inputs may be dense or sparse Tensors, primitive python objects, data structures that contain tensors, and printable Python objects. Printed tensors will recursively show the first and last elements of each dimension to summarize.
Example | |
---|---|
Single-input usage:
(This prints "[0 1 2 ... 7 8 9]" to sys.stderr) Multi-input usage:
(This prints "tensors: [0 1 2 ... 7 8 9] {2: [0 2 4 ... 14 16 18]}" to sys.stdout) Changing the input separator:
(This prints "[0 1],[0 2]" to sys.stderr) Usage in a
(This prints "[0 1 2 ... 7 8 9]" to sys.stderr) |
Compatibility usage in TF 1.x graphs:
In graphs manually created outside of tf.function
, this method returns the created TF operator that prints the data. To make sure the operator runs, users need to pass the produced op to tf.compat.v1.Session
's run method, or to use the op as a control dependency for executed ops by specifying with tf.compat.v1.control_dependencies([print_op])
.
tf.compat.v1.disable_v2_behavior() # for TF1 compatibility only sess = tf.compat.v1.Session() with sess.as_default(): tensor = tf.range(10) print_op = tf.print("tensors:", tensor, {2: tensor * 2}, output_stream=sys.stdout) with tf.control_dependencies([print_op]): tripled_tensor = tensor * 3 sess.run(tripled_tensor)
(This prints "tensors: [0 1 2 ... 7 8 9] {2: [0 2 4 ... 14 16 18]}" to sys.stdout)
Returns | |
---|---|
None when executing eagerly. During graph tracing this returns a TF operator that prints the specified inputs in the specified output stream or logging level. This operator will be automatically executed except inside of tf.compat.v1 graphs and sessions. |
Raises | |
---|---|
ValueError | If an unsupported output stream is specified. |