![]() |
MaxNorm weight constraint.
Inherits From: Constraint
tf.keras.constraints.MaxNorm( max_value=2, axis=0 )
Constrains the weights incident to each hidden unit to have a norm less than or equal to a desired value.
Also available via the shortcut function keras.constraints.max_norm
.
Methods
from_config
@classmethod
from_config( config )
Instantiates a weight constraint from a configuration dictionary.
Example:
constraint = UnitNorm() config = constraint.get_config() constraint = UnitNorm.from_config(config)
Args | |
---|---|
config | A Python dictionary, the output of get_config() . |
Returns | |
---|---|
A keras.constraints.Constraint instance. |
get_config
get_config()
Returns a Python dict of the object config.
A constraint config is a Python dictionary (JSON-serializable) that can be used to reinstantiate the same object.
Returns | |
---|---|
Python dict containing the configuration of the constraint object. |
__call__
__call__( w )
Applies the constraint to the input weight variable.
By default, the inputs weight variable is not modified. Users should override this method to implement their own projection function.
Args | |
---|---|
w | Input weight variable. |
Returns | |
---|---|
Projected variable (by default, returns unmodified inputs). |