pandas: Powerful data analysis tools for Python Wes McKinney Lambda Foundry, Inc. @wesmckinn PhillyPUG 3/27/2012
Me • Recovering mathematician • 3 years in the quant finance industry • Last 2: statistics + freelance + open source • My new company: Lambda Foundry • High productivity data analysis and research tools for quant finance
Me • Blog: http://blog.wesmckinney.com • GitHub: http://github.com/wesm • Twitter: @wesmckinn
Agile Tools for Real World Data Wes McKinney Python for Data Analysis • Pragmatic intro to scientific Python • pandas • Case studies • ETA: Late 2012 In the works Agile Tools for Real World Data
pandas? • http://pandas.pydata.org • Rich relational data tool built on top of NumPy • Like R’s data.frame on steroids • Excellent performance • Easy-to-use, highly consistent API • A foundation for data analysis in Python
pandas • In heavy production use in the financial industry, among others • Generally much better performance than other open source alternatives (e.g. R) • Hope: basis for the “next generation” statistical computing and analysis environment
Simplifying data wrangling • Data munging / preparation / cleaning / integration is slow, error prone, and time consuming • Everyone already <3’s Python for data wrangling: pandas takes it to the next level
Explosive pandas growth • 10 significant releases since 9/2011 • Hugely increased user base
Battle tested • > 98% line coverage as measured by coverage.py • v0.3.0 (2/19/2011): 533 test functions
Battle tested • > 98% line coverage as measured by coverage.py • v0.3.0 (2/19/2011): 533 test functions • v0.7.3dev (3/27/2012): >1500 test functions
IPython • Simply put: one of the hottest Python projects out there • Tab completion, introspection, interactive debugger, command history • Designed to enhance your productivity in every way. I can’t live without it • IPython HTML notebook is #winning
Series • Subclass of numpy.ndarray • Data: any type • Index labels need not be ordered • Duplicates are possible (but result in reduced functionality) 5 6 12 -5 6.7 A B C D E valuesindex
DataFrame • NumPy array-like • Each column can have a different type • Row and column index • Size mutable: insert and delete columns 0 4 8 -12 16 A B C D E index x y z w a 2.7 6 10 NA 18 True True False False False foo bar baz quxcolumns
DataFrame In [10]: tips[:10] Out[10]: total_bill tip sex smoker day time size 1 16.99 1.01 Female No Sun Dinner 2 2 10.34 1.66 Male No Sun Dinner 3 3 21.01 3.50 Male No Sun Dinner 3 4 23.68 3.31 Male No Sun Dinner 2 5 24.59 3.61 Female No Sun Dinner 4 6 25.29 4.71 Male No Sun Dinner 4 7 8.770 2.00 Male No Sun Dinner 2 8 26.88 3.12 Male No Sun Dinner 4 9 15.04 1.96 Male No Sun Dinner 2 10 14.78 3.23 Male No Sun Dinner 2
DataFrame • Axis indexing enable rich data alignment, joins / merges, reshaping, selection, etc. day Fri Sat Sun Thur sex smoker Female No 3.125 2.725 3.329 2.460 Yes 2.683 2.869 3.500 2.990 Male No 2.500 3.257 3.115 2.942 Yes 2.741 2.879 3.521 3.058
Axis indexing, the special pandas-flavored sauce • Enables “alignment-free” programming • Prevents major source of data munging frustration and errors • Fast data selection • Powerful way of describing reshape / join / merge / pivot-table operations
Data alignment • Binary operations are joins! B C D E 1 2 3 4 A B C D 0 1 2 3 + = A B C D NA 2 4 6 E NA
GroupBy A 0 B 5 C 10 5 10 15 10 15 20 A A A B B B C C C A 15 B 30 C 45 A B C A B C 0 5 10 5 10 15 10 15 20 sum ApplySplit Key Combine sum sum
Hierarchical indexes • Semantics: a tuple at each tick • Enables easy group selection • Terminology:“multiple levels” • Natural part of GroupBy and reshape operations A 1 2 3 1 2 3 4 B
Hierarchical indexes • Semantics: a tuple at each tick • Enables easy group selection • Terminology:“multiple levels” • Natural part of GroupBy and reshape operations A 1 2 3 1 2 3 4 B { {
Let’s have a little fun To the IPython Notebook!
What’s in pandas? • A big library: 40k SLOC
Tests! • Huge accumulation of use cases originating in real world applications • 68 lines of tests for every 100 lines of code
pandas.core • Data structures • Series (1D) • DataFrame (2D) • Panel (3D) • NA-friendly statistics • Index implementations / label-indexing
pandas.core • GroupBy engine • Time series tools • Date range generation • Extensible date offsets • Hierarchical indexing stuff
Elsewhere • Join / concatenation algorithms • Sparse versions of Series, DataFrame... • IO tools: CSV files, HDF5, Excel 2003/2007 • Moving window statistics (rolling mean, ...) • Pivot tables • High level matplotlib interface
Hmm, pandas/src • ~6000 lines of mostly Cython code • Fast data algorithms that power the library and make it fast • pandas in PyPy?
Ok, so why Python? • Look around you! • Build a superior data analysis and statistical computing environment • Build mission-critical, data-driven production systems
Trolling #rstats Hash tables, anyone?
The pandas roadmap • Improved time series capabilities • Port GroupBy engine to NumPy only • Better integration with statsmodels and scikit-learn • R integration via rpy2
The pandas roadmap • Integration with JavaScript visualization frameworks: D3, Flot, others • Alternate DataFrame “backends” • Memory maps • HDF5 / PyTables • SQL or NoSQL-backed • Tighter IPython Notebook integration
ggplot2 for Python • We need to build better a better interface for creating statistical graphics in Python • Use pandas as the base layer ! • Upcoming project from Peter Wang: bokeh
pandas for “Big Data” • Quite common to need to process larger- than-RAM data sets • Alternate DataFrame backends are the likely solution • Ripe for integration with MapReduce frameworks
Better time series • Integration of scikits.timeseries codebase • NumPy datetime64 dtype • Higher performance, less memory
Better time series • Fixed frequency handling • Time zones • Multiple time concepts • Intervals: 1984, or “1984 Q4” • Timestamps: moment in time, to micro- or nanosecond resolution
Thanks! • Follow me on Twitter: @wesmckinn • pydata/pandas on GitHub!

pandas: Powerful data analysis tools for Python

  • 1.
    pandas: Powerful data analysistools for Python Wes McKinney Lambda Foundry, Inc. @wesmckinn PhillyPUG 3/27/2012
  • 2.
    Me • Recovering mathematician •3 years in the quant finance industry • Last 2: statistics + freelance + open source • My new company: Lambda Foundry • High productivity data analysis and research tools for quant finance
  • 3.
    Me • Blog: http://blog.wesmckinney.com •GitHub: http://github.com/wesm • Twitter: @wesmckinn
  • 4.
    Agile Tools forReal World Data Wes McKinney Python for Data Analysis • Pragmatic intro to scientific Python • pandas • Case studies • ETA: Late 2012 In the works Agile Tools for Real World Data
  • 5.
    pandas? • http://pandas.pydata.org • Richrelational data tool built on top of NumPy • Like R’s data.frame on steroids • Excellent performance • Easy-to-use, highly consistent API • A foundation for data analysis in Python
  • 6.
    pandas • In heavyproduction use in the financial industry, among others • Generally much better performance than other open source alternatives (e.g. R) • Hope: basis for the “next generation” statistical computing and analysis environment
  • 7.
    Simplifying data wrangling •Data munging / preparation / cleaning / integration is slow, error prone, and time consuming • Everyone already <3’s Python for data wrangling: pandas takes it to the next level
  • 9.
    Explosive pandas growth •10 significant releases since 9/2011 • Hugely increased user base
  • 10.
    Battle tested • >98% line coverage as measured by coverage.py • v0.3.0 (2/19/2011): 533 test functions
  • 11.
    Battle tested • >98% line coverage as measured by coverage.py • v0.3.0 (2/19/2011): 533 test functions • v0.7.3dev (3/27/2012): >1500 test functions
  • 12.
    IPython • Simply put:one of the hottest Python projects out there • Tab completion, introspection, interactive debugger, command history • Designed to enhance your productivity in every way. I can’t live without it • IPython HTML notebook is #winning
  • 13.
    Series • Subclass ofnumpy.ndarray • Data: any type • Index labels need not be ordered • Duplicates are possible (but result in reduced functionality) 5 6 12 -5 6.7 A B C D E valuesindex
  • 14.
    DataFrame • NumPy array-like •Each column can have a different type • Row and column index • Size mutable: insert and delete columns 0 4 8 -12 16 A B C D E index x y z w a 2.7 6 10 NA 18 True True False False False foo bar baz quxcolumns
  • 15.
    DataFrame In [10]: tips[:10] Out[10]: total_billtip sex smoker day time size 1 16.99 1.01 Female No Sun Dinner 2 2 10.34 1.66 Male No Sun Dinner 3 3 21.01 3.50 Male No Sun Dinner 3 4 23.68 3.31 Male No Sun Dinner 2 5 24.59 3.61 Female No Sun Dinner 4 6 25.29 4.71 Male No Sun Dinner 4 7 8.770 2.00 Male No Sun Dinner 2 8 26.88 3.12 Male No Sun Dinner 4 9 15.04 1.96 Male No Sun Dinner 2 10 14.78 3.23 Male No Sun Dinner 2
  • 16.
    DataFrame • Axis indexingenable rich data alignment, joins / merges, reshaping, selection, etc. day Fri Sat Sun Thur sex smoker Female No 3.125 2.725 3.329 2.460 Yes 2.683 2.869 3.500 2.990 Male No 2.500 3.257 3.115 2.942 Yes 2.741 2.879 3.521 3.058
  • 17.
    Axis indexing, thespecial pandas-flavored sauce • Enables “alignment-free” programming • Prevents major source of data munging frustration and errors • Fast data selection • Powerful way of describing reshape / join / merge / pivot-table operations
  • 18.
    Data alignment • Binaryoperations are joins! B C D E 1 2 3 4 A B C D 0 1 2 3 + = A B C D NA 2 4 6 E NA
  • 19.
    GroupBy A 0 B 5 C10 5 10 15 10 15 20 A A A B B B C C C A 15 B 30 C 45 A B C A B C 0 5 10 5 10 15 10 15 20 sum ApplySplit Key Combine sum sum
  • 20.
    Hierarchical indexes • Semantics:a tuple at each tick • Enables easy group selection • Terminology:“multiple levels” • Natural part of GroupBy and reshape operations A 1 2 3 1 2 3 4 B
  • 21.
    Hierarchical indexes • Semantics:a tuple at each tick • Enables easy group selection • Terminology:“multiple levels” • Natural part of GroupBy and reshape operations A 1 2 3 1 2 3 4 B { {
  • 22.
    Let’s have alittle fun To the IPython Notebook!
  • 23.
    What’s in pandas? •A big library: 40k SLOC
  • 24.
    Tests! • Huge accumulationof use cases originating in real world applications • 68 lines of tests for every 100 lines of code
  • 26.
    pandas.core • Data structures •Series (1D) • DataFrame (2D) • Panel (3D) • NA-friendly statistics • Index implementations / label-indexing
  • 27.
    pandas.core • GroupBy engine •Time series tools • Date range generation • Extensible date offsets • Hierarchical indexing stuff
  • 28.
    Elsewhere • Join /concatenation algorithms • Sparse versions of Series, DataFrame... • IO tools: CSV files, HDF5, Excel 2003/2007 • Moving window statistics (rolling mean, ...) • Pivot tables • High level matplotlib interface
  • 29.
    Hmm, pandas/src • ~6000lines of mostly Cython code • Fast data algorithms that power the library and make it fast • pandas in PyPy?
  • 30.
    Ok, so whyPython? • Look around you! • Build a superior data analysis and statistical computing environment • Build mission-critical, data-driven production systems
  • 31.
  • 32.
    The pandas roadmap •Improved time series capabilities • Port GroupBy engine to NumPy only • Better integration with statsmodels and scikit-learn • R integration via rpy2
  • 33.
    The pandas roadmap •Integration with JavaScript visualization frameworks: D3, Flot, others • Alternate DataFrame “backends” • Memory maps • HDF5 / PyTables • SQL or NoSQL-backed • Tighter IPython Notebook integration
  • 34.
    ggplot2 for Python •We need to build better a better interface for creating statistical graphics in Python • Use pandas as the base layer ! • Upcoming project from Peter Wang: bokeh
  • 35.
    pandas for “BigData” • Quite common to need to process larger- than-RAM data sets • Alternate DataFrame backends are the likely solution • Ripe for integration with MapReduce frameworks
  • 36.
    Better time series •Integration of scikits.timeseries codebase • NumPy datetime64 dtype • Higher performance, less memory
  • 37.
    Better time series •Fixed frequency handling • Time zones • Multiple time concepts • Intervals: 1984, or “1984 Q4” • Timestamps: moment in time, to micro- or nanosecond resolution
  • 38.
    Thanks! • Follow meon Twitter: @wesmckinn • pydata/pandas on GitHub!