Low Complexity Regularization of Inverse Problems Gabriel Peyré Joint works with: Samuel Vaiter Jalal Fadili Charles Dossal Mohammad Golbabaee VISI www.numerical-tours.com N
Overview • Compressed Sensing and Inverse Problems • Convex Regularization with Gauges • Performance Guarantees
Single Pixel Camera (Rice) x0 ˜
Single Pixel Camera (Rice) x0 ˜ y[i] = hx0 , 'i i P measures N micro-mirrors
Single Pixel Camera (Rice) x0 ˜ y[i] = hx0 , 'i i P measures P/N = 1 N micro-mirrors P/N = 0.16 P/N = 0.02
CS Hardware Model ˜ CS is about designing hardware: input signals f L2 (R2 ). Physical hardware resolution limit: target resolution f 2 x0 2 L ˜ array resolution CS hardware x0 2 R N micro mirrors RN . y 2 RP
CS Hardware Model ˜ CS is about designing hardware: input signals f L2 (R2 ). Physical hardware resolution limit: target resolution f x0 2 L ˜ array resolution x0 2 R N micro mirrors y 2 RP CS hardware , , ... 2 RN . , Operator x0
Inverse Problems Recovering x0 RN from noisy observations y = x 0 + w 2 RP
Inverse Problems Recovering x0 RN from noisy observations y = x 0 + w 2 RP Examples: Inpainting, super-resolution, compressed-sensing x0 x0
Inverse Problem Regularization Observations: y = x0 + w 2 RP . Estimator: x(y) depends only on observations y parameter
Inverse Problem Regularization Observations: y = x0 + w 2 RP . Estimator: x(y) depends only on observations y parameter Example: variational methods 1 x(y) 2 argmin ||y x||2 + J(x) x2RN 2 Data fidelity Regularity
Inverse Problem Regularization Observations: y = x0 + w 2 RP . Estimator: x(y) depends only on observations y parameter Example: variational methods 1 x(y) 2 argmin ||y x||2 + J(x) x2RN 2 Data fidelity Regularity Performance analysis: ! Criteria on (x0 , ||w||, ) to ensure L2 stability ||x(y) x0 || = O(||w||) Model stability (e.g. spikes location)
Overview • Compressed Sensing and Inverse Problems • Convex Regularization with Gauges • Performance Guarantees
Union of Linear Models for Data Processing Union of models: T 2 T linear spaces. Synthesis sparsity: T Coe cients x Image x
Union of Linear Models for Data Processing Union of models: T 2 T linear spaces. Synthesis sparsity: Structured sparsity: T Coe cients x Image x
Union of Linear Models for Data Processing Union of models: T 2 T linear spaces. Synthesis sparsity: Structured sparsity: T Coe cients x Image x D Analysis sparsity: Image x Gradient D⇤ x
Union of Linear Models for Data Processing Union of models: T 2 T linear spaces. Synthesis sparsity: Structured sparsity: T Coe cients x Analysis sparsity: Image x D Low-rank: Image x Gradient D⇤ x S1,· Multi-spectral imaging: Pr xi,· = j=1 Ai,j Sj,· S2,· x S3,·
Gauges for Union of Linear Models Gauge: J :R N !R + Convex 8 ↵ 2 R+ , J(↵x) = ↵J(x)
Gauges for Union of Linear Models Gauge: J :R N !R + Convex 8 ↵ 2 R+ , J(↵x) = ↵J(x) Piecewise regular ball , Union of linear models (T )T 2T x J(x) = ||x||1 T T = sparse vectors
Gauges for Union of Linear Models Gauge: J :R N !R + Convex 8 ↵ 2 R+ , J(↵x) = ↵J(x) Piecewise regular ball , Union of linear models (T )T 2T T0 x0 x J(x) = ||x||1 T T = sparse vectors
Gauges for Union of Linear Models Gauge: J :R N !R Convex 8 ↵ 2 R+ , J(↵x) = ↵J(x) + Piecewise regular ball , Union of linear models (T )T 2T T T0 x0 x J(x) = ||x||1 T T = sparse vectors x T0 x |x1 |+||x2,3 || T = block sparse vectors 0
Gauges for Union of Linear Models Gauge: J :R N !R Convex 8 ↵ 2 R+ , J(↵x) = ↵J(x) + Piecewise regular ball , Union of linear models (T )T 2T T T0 x0 x J(x) = ||x||1 T T = sparse vectors x T x |x1 |+||x2,3 || T = block sparse vectors 0 x 0 J(x) = ||x||⇤ T = low-rank matrices
Gauges for Union of Linear Models Gauge: J :R N !R Convex 8 ↵ 2 R+ , J(↵x) = ↵J(x) + Piecewise regular ball , Union of linear models (T )T 2T T T0 x0 x J(x) = ||x||1 T T = sparse vectors T0 x T x |x1 |+||x2,3 || T = block sparse vectors 0 x x x0 0 J(x) = ||x||⇤ T = low-rank matrices J(x) = ||x||1 T = antisparse vectors
Subdifferentials and Models @J(x) = {⌘ 8 y, J(y) > J(x)+h⌘, y xi} |x|
Subdifferentials and Models @J(x) = {⌘ 8 y, J(y) > J(x)+h⌘, y |x| xi} Example: J(x) = ||x||1 ⇢ supp(⌘) = I, @||x||1 = ⌘ 8 j 2 I, |⌘j | 6 1 / I = supp(x) = {i xi 6= 0} @J(x) 0 x
Subdifferentials and Models @J(x) = {⌘ 8 y, J(y) > J(x)+h⌘, y |x| xi} Example: J(x) = ||x||1 ⇢ supp(⌘) = I, @||x||1 = ⌘ 8 j 2 I, |⌘j | 6 1 / I = supp(x) = {i xi 6= 0} Tx = {⌘ supp(⌘) = I} Definition: Tx = VectHull(@J(x))? @J(x) 0 x Tx
Subdifferentials and Models @J(x) = {⌘ 8 y, J(y) > J(x)+h⌘, y |x| xi} Example: J(x) = ||x||1 ⇢ supp(⌘) = I, @||x||1 = ⌘ 8 j 2 I, |⌘j | 6 1 / @J(x) 0 I = supp(x) = {i xi 6= 0} Tx Tx = {⌘ supp(⌘) = I} ex = sign(x) Definition: Tx = VectHull(@J(x))? ⌘ 2 @J(x) ex x =) ProjTx (⌘) = ex
Examples `1 sparsity: J(x) = ||x||1 ex = sign(x) x @J(x) x 0 Tx = {z supp(z) ⇢ supp(x)}
Examples `1 sparsity: J(x) = ||x||1 ex = sign(x) Tx = {z supp(z) ⇢ supp(x)} P Structured sparsity: J(x) = b ||xb || N (a) = a/||a|| ex = (N (xb ))b2B Tx = {z supp(z) ⇢ supp(x)} x @J(x) x 0 x @J(x) x 0
Examples `1 sparsity: J(x) = ||x||1 ex = sign(x) Tx = {z supp(z) ⇢ supp(x)} P Structured sparsity: J(x) = b ||xb || N (a) = a/||a|| ex = (N (xb ))b2B Tx = {z supp(z) ⇢ supp(x)} Nuclear norm: J(x) = ||x||⇤ ex = U V x @J(x) x 0 ⇤ x x = U ⇤V ⇤ SVD: ⇤ Tx = {z U? zV? = 0} @J(x) x 0 x @J(x)
Examples `1 sparsity: J(x) = ||x||1 ex = sign(x) Tx = {z supp(z) ⇢ supp(x)} P Structured sparsity: J(x) = b ||xb || N (a) = a/||a|| ex = (N (xb ))b2B Tx = {z supp(z) ⇢ supp(x)} Nuclear norm: J(x) = ||x||⇤ ex = U V ⇤ x = U ⇤V ⇤ SVD: ⇤ Tx = {z U? zV? = 0} I = {i |xi | = ||x||1 } Anti-sparsity: J(x) = ||x||1 Tx = {y yI / sign(xI )} ex = |I| 1 sign(x) x @J(x) x 0 x @J(x) @J(x) x 0 x @J(x) x x 0
Overview • Compressed Sensing and Inverse Problems • Convex Regularization with Gauges • Performance Guarantees
Dual Certificate and L2 Stability Noiseless recovery: min J(x) x= x0 (P0 ) x? x= x0
Dual Certificate and L2 Stability Noiseless recovery: min J(x) x= x0 (P0 ) Proposition: x0 solution of (P0 ) () 9 ⌘ 2 D(x0 ) Dual certificates: D(x0 ) = Im( ⇤ ⌘ x? ) @J(x0 ) @J(x0 ) x= x0
Dual Certificate and L2 Stability Noiseless recovery: min J(x) x= x0 (P0 ) Proposition: x0 solution of (P0 ) () 9 ⌘ 2 D(x0 ) Dual certificates: D(x0 ) = Im( ¯ Tight dual certificates: D(x0 ) = Im( ⇤ ⌘ @J(x0 ) x? ) @J(x0 ) ⇤ ) ri(@J(x0 )) x= x0
Dual Certificate and L2 Stability Noiseless recovery: min J(x) x= x0 (P0 ) Proposition: x0 solution of (P0 ) () 9 ⌘ 2 D(x0 ) Dual certificates: D(x0 ) = Im( ¯ Tight dual certificates: D(x0 ) = Im( Theorem: ¯ If 9 ⌘ 2 D(x0 ), for ⌘ @J(x0 ) x? x= x0 ⇤ ) @J(x0 ) ⇤ ) ri(@J(x0 )) [Fadili et al. 2013] ⇠ ||w|| one has ||x? x0 || = O(||w||)
Dual Certificate and L2 Stability Noiseless recovery: min J(x) x= x0 (P0 ) Proposition: x0 solution of (P0 ) () 9 ⌘ 2 D(x0 ) Dual certificates: D(x0 ) = Im( ¯ Tight dual certificates: D(x0 ) = Im( Theorem: ¯ If 9 ⌘ 2 D(x0 ), for ⌘ @J(x0 ) x? x= x0 ⇤ ) @J(x0 ) ⇤ ) ri(@J(x0 )) [Fadili et al. 2013] ⇠ ||w|| one has ||x? x0 || = O(||w||) [Grassmair, Haltmeier, Scherzer 2010]: J = || · ||1 . [Grassmair 2012]: J(x? x0 ) = O(||w||).
Compressed Sensing Setting Random matrix: 2 RP ⇥N , i,j ⇠ N (0, 1), i.i.d.
Compressed Sensing Setting Random matrix: 2 RP ⇥N , Sparse vectors: J = || · ||1 . Theorem: Let s = ||x0 ||0 . If i,j ⇠ N (0, 1), i.i.d. [Rudelson, Vershynin 2006] [Chandrasekaran et al. 2011] P > 2s log (N/s) ¯ Then 9⌘ 2 D(x0 ) with high probability on .
Compressed Sensing Setting Random matrix: 2 RP ⇥N , Sparse vectors: J = || · ||1 . Theorem: Let s = ||x0 ||0 . If i,j ⇠ N (0, 1), i.i.d. [Rudelson, Vershynin 2006] [Chandrasekaran et al. 2011] P > 2s log (N/s) ¯ Then 9⌘ 2 D(x0 ) with high probability on Low-rank matrices: J = || · ||⇤ . Theorem: Let r = rank(x0 ). If . [Chandrasekaran et al. 2011] x0 2 RN1 ⇥N2 P > 3r(N1 + N2 r) ¯ Then 9⌘ 2 D(x0 ) with high probability on .
Compressed Sensing Setting Random matrix: 2 RP ⇥N , Sparse vectors: J = || · ||1 . Theorem: Let s = ||x0 ||0 . If i,j ⇠ N (0, 1), i.i.d. [Rudelson, Vershynin 2006] [Chandrasekaran et al. 2011] P > 2s log (N/s) ¯ Then 9⌘ 2 D(x0 ) with high probability on Low-rank matrices: J = || · ||⇤ . Theorem: Let r = rank(x0 ). If . [Chandrasekaran et al. 2011] x0 2 RN1 ⇥N2 P > 3r(N1 + N2 r) ¯ Then 9⌘ 2 D(x0 ) with high probability on ! Similar results for || · ||1,2 , || · ||1 . .
Minimal-norm Certificate ⌘ 2 D(x0 ) =) ⇢ ⌘ = ⇤q ProjT (⌘) = e T = T x0 e = ex0
Minimal-norm Certificate ⌘ 2 D(x0 ) =) ⇢ ⌘ = ⇤q ProjT (⌘) = e Minimal-norm pre-certificate: ⌘0 = T = T x0 e = ex0 argmin ⌘= ⇤ q,⌘ T =e ||q||
Minimal-norm Certificate ⌘ 2 D(x0 ) =) ⇢ ⌘ = ⇤q ProjT (⌘) = e Minimal-norm pre-certificate: ⌘0 = Proposition: One has T = T x0 e = ex0 argmin ⌘= ⌘0 = ( ⇤ q,⌘ + T T =e )⇤ e ||q||
Minimal-norm Certificate ⌘ 2 D(x0 ) =) ⇢ ⌘ = ⇤q ProjT (⌘) = e Minimal-norm pre-certificate: ⌘0 = argmin ⌘= One has ⌘0 = ( ¯ If ⌘0 2 D(x0 ) and ⇤ q,⌘ + T T =e ||q|| )⇤ e ⇠ ||w||, Proposition: Theorem: T = T x0 e = ex0 the unique solution x? of P (y) for y = x0 + w satisfies Tx ? = T x 0 and ||x? x0 || = O(||w||) [Vaiter et al. 2013]
Minimal-norm Certificate ⌘ 2 D(x0 ) =) ⇢ ⌘ = ⇤q ProjT (⌘) = e Minimal-norm pre-certificate: ⌘0 = argmin ⌘= One has ⌘0 = ( ¯ If ⌘0 2 D(x0 ) and ⇤ q,⌘ + T T =e ||q|| )⇤ e ⇠ ||w||, Proposition: Theorem: T = T x0 e = ex0 the unique solution x? of P (y) for y = x0 + w satisfies Tx ? = T x 0 and ||x? x0 || = O(||w||) [Vaiter et al. 2013] [Fuchs 2004]: J = || · ||1 . [Vaiter et al. 2011]: J = ||D⇤ · ||1 . [Bach 2008]: J = || · ||1,2 and J = || · ||⇤ .
Compressed Sensing Setting Random matrix: 2 RP ⇥N , Sparse vectors: J = || · ||1 . Theorem: Let s = ||x0 ||0 . If i,j ⇠ N (0, 1), i.i.d. [Wainwright 2009] [Dossal et al. 2011] P > 2s log(N ) ¯ Then ⌘0 2 D( x0 ) wi th hi g h prob a b i l i ty on .
Compressed Sensing Setting Random matrix: 2 RP ⇥N , i,j Sparse vectors: J = || · ||1 . ⇠ N (0, 1), i.i.d. [Wainwright 2009] [Dossal et al. 2011] Theorem: Let s = ||x0 ||0 . If P > 2s log(N ) ¯ Then ⌘0 2 D( x0 ) wi th hi g h prob a b i l i ty on Phase transitions: L2 stability P ⇠ 2s log(N/s) vs. . Model stability P ⇠ 2s log(N )
Compressed Sensing Setting Random matrix: 2 RP ⇥N , i,j Sparse vectors: J = || · ||1 . ⇠ N (0, 1), i.i.d. [Wainwright 2009] [Dossal et al. 2011] Theorem: Let s = ||x0 ||0 . If P > 2s log(N ) ¯ Then ⌘0 2 D( x0 ) wi th hi g h prob a b i l i ty on Phase transitions: L2 stability P ⇠ 2s log(N/s) vs. . Model stability ! Similar results for || · ||1,2 , || · ||⇤ , || · ||1 . P ⇠ 2s log(N )
Compressed Sensing Setting Random matrix: 2 RP ⇥N , i,j Sparse vectors: J = || · ||1 . ⇠ N (0, 1), i.i.d. [Wainwright 2009] [Dossal et al. 2011] Theorem: Let s = ||x0 ||0 . If P > 2s log(N ) ¯ Then ⌘0 2 D( x0 ) wi th hi g h prob a b i l i ty on Phase transitions: L2 stability P ⇠ 2s log(N/s) vs. . Model stability ! Similar results for || · ||1,2 , || · ||⇤ , || · ||1 . P ⇠ 2s log(N ) ! Not using RIP technics (non-uniform result on x0 ).
1-D Sparse Spikes Deconvolution ⇥x = xi (· i) x0 i J(x) = ||x||1 Increasing : reduces correlation. reduces resolution. x0
1-D Sparse Spikes Deconvolution ⇥x = xi (· x0 i) i J(x) = ||x||1 Increasing : reduces correlation. reduces resolution. x0 ||⌘0,I c ||1 2 1 0 10 20 I = {j x0 (j) 6= 0} ||⌘0,I c ||1 < 1 () ¯ ⌘0 2 D(x0 ) () support recovery.
Conclusion Gauges: encode linear models as singular points.
Conclusion Gauges: encode linear models as singular points. Performance measures L2 error model di↵erent CS guarantees
Conclusion Gauges: encode linear models as singular points. Performance measures L2 error model di↵erent CS guarantees Specific certificate ⌘0 .
Conclusion Gauges: encode linear models as singular points. Performance measures L2 error model di↵erent CS guarantees Specific certificate ⌘0 . Open problems: – Approximate model recovery Tx? ⇡ Tx0 . – CS performance with complicated gauges (e.g. TV).

Low Complexity Regularization of Inverse Problems

  • 1.
    Low Complexity Regularization of InverseProblems Gabriel Peyré Joint works with: Samuel Vaiter Jalal Fadili Charles Dossal Mohammad Golbabaee VISI www.numerical-tours.com N
  • 2.
    Overview • Compressed Sensingand Inverse Problems • Convex Regularization with Gauges • Performance Guarantees
  • 3.
    Single Pixel Camera(Rice) x0 ˜
  • 4.
    Single Pixel Camera(Rice) x0 ˜ y[i] = hx0 , 'i i P measures N micro-mirrors
  • 5.
    Single Pixel Camera(Rice) x0 ˜ y[i] = hx0 , 'i i P measures P/N = 1 N micro-mirrors P/N = 0.16 P/N = 0.02
  • 6.
    CS Hardware Model ˜ CSis about designing hardware: input signals f L2 (R2 ). Physical hardware resolution limit: target resolution f 2 x0 2 L ˜ array resolution CS hardware x0 2 R N micro mirrors RN . y 2 RP
  • 7.
    CS Hardware Model ˜ CSis about designing hardware: input signals f L2 (R2 ). Physical hardware resolution limit: target resolution f x0 2 L ˜ array resolution x0 2 R N micro mirrors y 2 RP CS hardware , , ... 2 RN . , Operator x0
  • 8.
    Inverse Problems Recovering x0RN from noisy observations y = x 0 + w 2 RP
  • 9.
    Inverse Problems Recovering x0RN from noisy observations y = x 0 + w 2 RP Examples: Inpainting, super-resolution, compressed-sensing x0 x0
  • 10.
    Inverse Problem Regularization Observations:y = x0 + w 2 RP . Estimator: x(y) depends only on observations y parameter
  • 11.
    Inverse Problem Regularization Observations:y = x0 + w 2 RP . Estimator: x(y) depends only on observations y parameter Example: variational methods 1 x(y) 2 argmin ||y x||2 + J(x) x2RN 2 Data fidelity Regularity
  • 12.
    Inverse Problem Regularization Observations:y = x0 + w 2 RP . Estimator: x(y) depends only on observations y parameter Example: variational methods 1 x(y) 2 argmin ||y x||2 + J(x) x2RN 2 Data fidelity Regularity Performance analysis: ! Criteria on (x0 , ||w||, ) to ensure L2 stability ||x(y) x0 || = O(||w||) Model stability (e.g. spikes location)
  • 13.
    Overview • Compressed Sensingand Inverse Problems • Convex Regularization with Gauges • Performance Guarantees
  • 14.
    Union of LinearModels for Data Processing Union of models: T 2 T linear spaces. Synthesis sparsity: T Coe cients x Image x
  • 15.
    Union of LinearModels for Data Processing Union of models: T 2 T linear spaces. Synthesis sparsity: Structured sparsity: T Coe cients x Image x
  • 16.
    Union of LinearModels for Data Processing Union of models: T 2 T linear spaces. Synthesis sparsity: Structured sparsity: T Coe cients x Image x D Analysis sparsity: Image x Gradient D⇤ x
  • 17.
    Union of LinearModels for Data Processing Union of models: T 2 T linear spaces. Synthesis sparsity: Structured sparsity: T Coe cients x Analysis sparsity: Image x D Low-rank: Image x Gradient D⇤ x S1,· Multi-spectral imaging: Pr xi,· = j=1 Ai,j Sj,· S2,· x S3,·
  • 18.
    Gauges for Unionof Linear Models Gauge: J :R N !R + Convex 8 ↵ 2 R+ , J(↵x) = ↵J(x)
  • 19.
    Gauges for Unionof Linear Models Gauge: J :R N !R + Convex 8 ↵ 2 R+ , J(↵x) = ↵J(x) Piecewise regular ball , Union of linear models (T )T 2T x J(x) = ||x||1 T T = sparse vectors
  • 20.
    Gauges for Unionof Linear Models Gauge: J :R N !R + Convex 8 ↵ 2 R+ , J(↵x) = ↵J(x) Piecewise regular ball , Union of linear models (T )T 2T T0 x0 x J(x) = ||x||1 T T = sparse vectors
  • 21.
    Gauges for Unionof Linear Models Gauge: J :R N !R Convex 8 ↵ 2 R+ , J(↵x) = ↵J(x) + Piecewise regular ball , Union of linear models (T )T 2T T T0 x0 x J(x) = ||x||1 T T = sparse vectors x T0 x |x1 |+||x2,3 || T = block sparse vectors 0
  • 22.
    Gauges for Unionof Linear Models Gauge: J :R N !R Convex 8 ↵ 2 R+ , J(↵x) = ↵J(x) + Piecewise regular ball , Union of linear models (T )T 2T T T0 x0 x J(x) = ||x||1 T T = sparse vectors x T x |x1 |+||x2,3 || T = block sparse vectors 0 x 0 J(x) = ||x||⇤ T = low-rank matrices
  • 23.
    Gauges for Unionof Linear Models Gauge: J :R N !R Convex 8 ↵ 2 R+ , J(↵x) = ↵J(x) + Piecewise regular ball , Union of linear models (T )T 2T T T0 x0 x J(x) = ||x||1 T T = sparse vectors T0 x T x |x1 |+||x2,3 || T = block sparse vectors 0 x x x0 0 J(x) = ||x||⇤ T = low-rank matrices J(x) = ||x||1 T = antisparse vectors
  • 24.
    Subdifferentials and Models @J(x)= {⌘ 8 y, J(y) > J(x)+h⌘, y xi} |x|
  • 25.
    Subdifferentials and Models @J(x)= {⌘ 8 y, J(y) > J(x)+h⌘, y |x| xi} Example: J(x) = ||x||1 ⇢ supp(⌘) = I, @||x||1 = ⌘ 8 j 2 I, |⌘j | 6 1 / I = supp(x) = {i xi 6= 0} @J(x) 0 x
  • 26.
    Subdifferentials and Models @J(x)= {⌘ 8 y, J(y) > J(x)+h⌘, y |x| xi} Example: J(x) = ||x||1 ⇢ supp(⌘) = I, @||x||1 = ⌘ 8 j 2 I, |⌘j | 6 1 / I = supp(x) = {i xi 6= 0} Tx = {⌘ supp(⌘) = I} Definition: Tx = VectHull(@J(x))? @J(x) 0 x Tx
  • 27.
    Subdifferentials and Models @J(x)= {⌘ 8 y, J(y) > J(x)+h⌘, y |x| xi} Example: J(x) = ||x||1 ⇢ supp(⌘) = I, @||x||1 = ⌘ 8 j 2 I, |⌘j | 6 1 / @J(x) 0 I = supp(x) = {i xi 6= 0} Tx Tx = {⌘ supp(⌘) = I} ex = sign(x) Definition: Tx = VectHull(@J(x))? ⌘ 2 @J(x) ex x =) ProjTx (⌘) = ex
  • 28.
    Examples `1 sparsity: J(x)= ||x||1 ex = sign(x) x @J(x) x 0 Tx = {z supp(z) ⇢ supp(x)}
  • 29.
    Examples `1 sparsity: J(x)= ||x||1 ex = sign(x) Tx = {z supp(z) ⇢ supp(x)} P Structured sparsity: J(x) = b ||xb || N (a) = a/||a|| ex = (N (xb ))b2B Tx = {z supp(z) ⇢ supp(x)} x @J(x) x 0 x @J(x) x 0
  • 30.
    Examples `1 sparsity: J(x)= ||x||1 ex = sign(x) Tx = {z supp(z) ⇢ supp(x)} P Structured sparsity: J(x) = b ||xb || N (a) = a/||a|| ex = (N (xb ))b2B Tx = {z supp(z) ⇢ supp(x)} Nuclear norm: J(x) = ||x||⇤ ex = U V x @J(x) x 0 ⇤ x x = U ⇤V ⇤ SVD: ⇤ Tx = {z U? zV? = 0} @J(x) x 0 x @J(x)
  • 31.
    Examples `1 sparsity: J(x)= ||x||1 ex = sign(x) Tx = {z supp(z) ⇢ supp(x)} P Structured sparsity: J(x) = b ||xb || N (a) = a/||a|| ex = (N (xb ))b2B Tx = {z supp(z) ⇢ supp(x)} Nuclear norm: J(x) = ||x||⇤ ex = U V ⇤ x = U ⇤V ⇤ SVD: ⇤ Tx = {z U? zV? = 0} I = {i |xi | = ||x||1 } Anti-sparsity: J(x) = ||x||1 Tx = {y yI / sign(xI )} ex = |I| 1 sign(x) x @J(x) x 0 x @J(x) @J(x) x 0 x @J(x) x x 0
  • 32.
    Overview • Compressed Sensingand Inverse Problems • Convex Regularization with Gauges • Performance Guarantees
  • 33.
    Dual Certificate andL2 Stability Noiseless recovery: min J(x) x= x0 (P0 ) x? x= x0
  • 34.
    Dual Certificate andL2 Stability Noiseless recovery: min J(x) x= x0 (P0 ) Proposition: x0 solution of (P0 ) () 9 ⌘ 2 D(x0 ) Dual certificates: D(x0 ) = Im( ⇤ ⌘ x? ) @J(x0 ) @J(x0 ) x= x0
  • 35.
    Dual Certificate andL2 Stability Noiseless recovery: min J(x) x= x0 (P0 ) Proposition: x0 solution of (P0 ) () 9 ⌘ 2 D(x0 ) Dual certificates: D(x0 ) = Im( ¯ Tight dual certificates: D(x0 ) = Im( ⇤ ⌘ @J(x0 ) x? ) @J(x0 ) ⇤ ) ri(@J(x0 )) x= x0
  • 36.
    Dual Certificate andL2 Stability Noiseless recovery: min J(x) x= x0 (P0 ) Proposition: x0 solution of (P0 ) () 9 ⌘ 2 D(x0 ) Dual certificates: D(x0 ) = Im( ¯ Tight dual certificates: D(x0 ) = Im( Theorem: ¯ If 9 ⌘ 2 D(x0 ), for ⌘ @J(x0 ) x? x= x0 ⇤ ) @J(x0 ) ⇤ ) ri(@J(x0 )) [Fadili et al. 2013] ⇠ ||w|| one has ||x? x0 || = O(||w||)
  • 37.
    Dual Certificate andL2 Stability Noiseless recovery: min J(x) x= x0 (P0 ) Proposition: x0 solution of (P0 ) () 9 ⌘ 2 D(x0 ) Dual certificates: D(x0 ) = Im( ¯ Tight dual certificates: D(x0 ) = Im( Theorem: ¯ If 9 ⌘ 2 D(x0 ), for ⌘ @J(x0 ) x? x= x0 ⇤ ) @J(x0 ) ⇤ ) ri(@J(x0 )) [Fadili et al. 2013] ⇠ ||w|| one has ||x? x0 || = O(||w||) [Grassmair, Haltmeier, Scherzer 2010]: J = || · ||1 . [Grassmair 2012]: J(x? x0 ) = O(||w||).
  • 38.
    Compressed Sensing Setting Randommatrix: 2 RP ⇥N , i,j ⇠ N (0, 1), i.i.d.
  • 39.
    Compressed Sensing Setting Randommatrix: 2 RP ⇥N , Sparse vectors: J = || · ||1 . Theorem: Let s = ||x0 ||0 . If i,j ⇠ N (0, 1), i.i.d. [Rudelson, Vershynin 2006] [Chandrasekaran et al. 2011] P > 2s log (N/s) ¯ Then 9⌘ 2 D(x0 ) with high probability on .
  • 40.
    Compressed Sensing Setting Randommatrix: 2 RP ⇥N , Sparse vectors: J = || · ||1 . Theorem: Let s = ||x0 ||0 . If i,j ⇠ N (0, 1), i.i.d. [Rudelson, Vershynin 2006] [Chandrasekaran et al. 2011] P > 2s log (N/s) ¯ Then 9⌘ 2 D(x0 ) with high probability on Low-rank matrices: J = || · ||⇤ . Theorem: Let r = rank(x0 ). If . [Chandrasekaran et al. 2011] x0 2 RN1 ⇥N2 P > 3r(N1 + N2 r) ¯ Then 9⌘ 2 D(x0 ) with high probability on .
  • 41.
    Compressed Sensing Setting Randommatrix: 2 RP ⇥N , Sparse vectors: J = || · ||1 . Theorem: Let s = ||x0 ||0 . If i,j ⇠ N (0, 1), i.i.d. [Rudelson, Vershynin 2006] [Chandrasekaran et al. 2011] P > 2s log (N/s) ¯ Then 9⌘ 2 D(x0 ) with high probability on Low-rank matrices: J = || · ||⇤ . Theorem: Let r = rank(x0 ). If . [Chandrasekaran et al. 2011] x0 2 RN1 ⇥N2 P > 3r(N1 + N2 r) ¯ Then 9⌘ 2 D(x0 ) with high probability on ! Similar results for || · ||1,2 , || · ||1 . .
  • 42.
    Minimal-norm Certificate ⌘ 2D(x0 ) =) ⇢ ⌘ = ⇤q ProjT (⌘) = e T = T x0 e = ex0
  • 43.
    Minimal-norm Certificate ⌘ 2D(x0 ) =) ⇢ ⌘ = ⇤q ProjT (⌘) = e Minimal-norm pre-certificate: ⌘0 = T = T x0 e = ex0 argmin ⌘= ⇤ q,⌘ T =e ||q||
  • 44.
    Minimal-norm Certificate ⌘ 2D(x0 ) =) ⇢ ⌘ = ⇤q ProjT (⌘) = e Minimal-norm pre-certificate: ⌘0 = Proposition: One has T = T x0 e = ex0 argmin ⌘= ⌘0 = ( ⇤ q,⌘ + T T =e )⇤ e ||q||
  • 45.
    Minimal-norm Certificate ⌘ 2D(x0 ) =) ⇢ ⌘ = ⇤q ProjT (⌘) = e Minimal-norm pre-certificate: ⌘0 = argmin ⌘= One has ⌘0 = ( ¯ If ⌘0 2 D(x0 ) and ⇤ q,⌘ + T T =e ||q|| )⇤ e ⇠ ||w||, Proposition: Theorem: T = T x0 e = ex0 the unique solution x? of P (y) for y = x0 + w satisfies Tx ? = T x 0 and ||x? x0 || = O(||w||) [Vaiter et al. 2013]
  • 46.
    Minimal-norm Certificate ⌘ 2D(x0 ) =) ⇢ ⌘ = ⇤q ProjT (⌘) = e Minimal-norm pre-certificate: ⌘0 = argmin ⌘= One has ⌘0 = ( ¯ If ⌘0 2 D(x0 ) and ⇤ q,⌘ + T T =e ||q|| )⇤ e ⇠ ||w||, Proposition: Theorem: T = T x0 e = ex0 the unique solution x? of P (y) for y = x0 + w satisfies Tx ? = T x 0 and ||x? x0 || = O(||w||) [Vaiter et al. 2013] [Fuchs 2004]: J = || · ||1 . [Vaiter et al. 2011]: J = ||D⇤ · ||1 . [Bach 2008]: J = || · ||1,2 and J = || · ||⇤ .
  • 47.
    Compressed Sensing Setting Randommatrix: 2 RP ⇥N , Sparse vectors: J = || · ||1 . Theorem: Let s = ||x0 ||0 . If i,j ⇠ N (0, 1), i.i.d. [Wainwright 2009] [Dossal et al. 2011] P > 2s log(N ) ¯ Then ⌘0 2 D( x0 ) wi th hi g h prob a b i l i ty on .
  • 48.
    Compressed Sensing Setting Randommatrix: 2 RP ⇥N , i,j Sparse vectors: J = || · ||1 . ⇠ N (0, 1), i.i.d. [Wainwright 2009] [Dossal et al. 2011] Theorem: Let s = ||x0 ||0 . If P > 2s log(N ) ¯ Then ⌘0 2 D( x0 ) wi th hi g h prob a b i l i ty on Phase transitions: L2 stability P ⇠ 2s log(N/s) vs. . Model stability P ⇠ 2s log(N )
  • 49.
    Compressed Sensing Setting Randommatrix: 2 RP ⇥N , i,j Sparse vectors: J = || · ||1 . ⇠ N (0, 1), i.i.d. [Wainwright 2009] [Dossal et al. 2011] Theorem: Let s = ||x0 ||0 . If P > 2s log(N ) ¯ Then ⌘0 2 D( x0 ) wi th hi g h prob a b i l i ty on Phase transitions: L2 stability P ⇠ 2s log(N/s) vs. . Model stability ! Similar results for || · ||1,2 , || · ||⇤ , || · ||1 . P ⇠ 2s log(N )
  • 50.
    Compressed Sensing Setting Randommatrix: 2 RP ⇥N , i,j Sparse vectors: J = || · ||1 . ⇠ N (0, 1), i.i.d. [Wainwright 2009] [Dossal et al. 2011] Theorem: Let s = ||x0 ||0 . If P > 2s log(N ) ¯ Then ⌘0 2 D( x0 ) wi th hi g h prob a b i l i ty on Phase transitions: L2 stability P ⇠ 2s log(N/s) vs. . Model stability ! Similar results for || · ||1,2 , || · ||⇤ , || · ||1 . P ⇠ 2s log(N ) ! Not using RIP technics (non-uniform result on x0 ).
  • 51.
    1-D Sparse SpikesDeconvolution ⇥x = xi (· i) x0 i J(x) = ||x||1 Increasing : reduces correlation. reduces resolution. x0
  • 52.
    1-D Sparse SpikesDeconvolution ⇥x = xi (· x0 i) i J(x) = ||x||1 Increasing : reduces correlation. reduces resolution. x0 ||⌘0,I c ||1 2 1 0 10 20 I = {j x0 (j) 6= 0} ||⌘0,I c ||1 < 1 () ¯ ⌘0 2 D(x0 ) () support recovery.
  • 53.
    Conclusion Gauges: encode linearmodels as singular points.
  • 54.
    Conclusion Gauges: encode linearmodels as singular points. Performance measures L2 error model di↵erent CS guarantees
  • 55.
    Conclusion Gauges: encode linearmodels as singular points. Performance measures L2 error model di↵erent CS guarantees Specific certificate ⌘0 .
  • 56.
    Conclusion Gauges: encode linearmodels as singular points. Performance measures L2 error model di↵erent CS guarantees Specific certificate ⌘0 . Open problems: – Approximate model recovery Tx? ⇡ Tx0 . – CS performance with complicated gauges (e.g. TV).