open-­‐source,  high-­‐performance,   document-­‐oriented  database
Non-relational Operational Stores (“NoSQL”) New Gen. OLAP RDBMS (vertica,  aster,  greenplum) (Oracle,  MySQL)
NoSQL Really Means: non-­‐relational,  next-­‐generation   operational  datastores  and  databases
no  joins + no  complex  transactions Horizontally Scalable Architectures
no  joins + no  complex  transactions New Data Models
New Data Models improved  ways  to  develop  applications?
Data Models Key  /  Value memcached,  Dynamo Tabular BigTable Document  Oriented MongoDB,  CouchDB,  JSON  stores
• memcached scalability  &  performance • key/value • RDBMS depth  of  functionality
JSON-style Documents represented  as  BSON {“hello”:  “world”} x16x00x00x00x02hello x00x06x00x00x00world x00x00 http://bsonspec.org
Flexible “Schemas” {“author”:  “eliot”, {“author”:  “mike”,  “text”:  “...”,  “text”:  “...”}  “tags”:  [“mongodb”]}
Dynamic Queries
Atomic Update Modifiers
Focus on Performance
Replication master slave master master slave slave slave slave master master slave master
Auto-sharding Shards mongod mongod mongod ... Config mongod mongod mongod Servers mongod mongod mongod mongos mongos ... client
Many Supported Platforms / Languages
Best Use Cases T Scaling  Out Caching The  Web High  Volume
Less Good At highly  transactional ad-­‐hoc  business  intelligence problems  that  require  SQL
A Quick Aside _id special  key present  in  all  documents unique  across  a  Collection any  type  you  want
Post {author:  “mike”,  date:  new  Date(),  text:  “my  blog  post...”,  tags:  [“mongodb”,  “intro”]}
Comment {author:  “eliot”,  date:  new  Date(),  text:  “great  post!”}
New Post post  =  {author:  “mike”,    date:  new  Date(),    text:  “my  blog  post...”,    tags:  [“mongodb”,  “intro”]} db.posts.save(post)
Embedding a Comment c  =  {author:  “eliot”,    date:  new  Date(),    text:  “great  post!”} db.posts.update({_id:  post._id},                                  {$push:  {comments:  c}})
Posts by Author db.posts.find({author:  “mike”})
Last 10 Posts db.posts.find()                .sort({date:  -­‐1})                .limit(10)
Posts Since April 1 april_1  =  new  Date(2010,  3,  1) db.posts.find({date:  {$gt:  april_1}})
Posts Ending With ‘Tech’ db.posts.find({text:  /Tech$/})
Posts With a Tag db.posts.find({tags:  “mongodb”}) ...and Fast (multi-­‐key  indexes) db.posts.ensureIndex({tags:  1})
Indexing / Querying on Embedded Docs (dot  notation) db.posts.ensureIndex({“comments.author”:  1}) db.posts.find({“comments.author”:  “eliot”})
Counting Posts db.posts.count() db.posts.find({author:  “mike”}).count()
Basic Paging page  =  2 page_size  =  15 db.posts.find().limit(page_size)                              .skip(page  *  page_size)
Migration: Adding Titles (just  start  adding  them) post  =  {author:  “mike”,                date:  new  Date(),                text:  “another  blog  post...”,                tags:  [“mongodb”],              title:  “MongoDB  for  Fun  and  Profit”} post_id  =  db.posts.save(post)
Advanced Queries $gt,  $lt,  $gte,  $lte,  $ne,  $all,  $in,  $nin db.posts.find({$where:  “this.author  ==  ‘mike’  ||                                                this.title  ==  ‘foo’”})
Other Cool Stuff aggregation  and  map/reduce capped  collections unique  indexes mongo  shell GridFS geo
slides  will  be  up  on  http://dirolf.com Download MongoDB http://www.mongodb.org and  let  us  know  what  you  think @mdirolf        @mongodb

Introduction to MongoDB

  • 1.
    open-­‐source,  high-­‐performance,   document-­‐oriented  database
  • 2.
    Non-relational Operational Stores (“NoSQL”) New Gen. OLAP RDBMS (vertica,  aster,  greenplum) (Oracle,  MySQL)
  • 3.
    NoSQL Really Means: non-­‐relational,  next-­‐generation   operational  datastores  and  databases
  • 4.
    no  joins + no  complex  transactions Horizontally Scalable Architectures
  • 5.
    no  joins + no  complex  transactions New Data Models
  • 6.
    New Data Models improved  ways  to  develop  applications?
  • 7.
    Data Models Key  /  Value memcached,  Dynamo Tabular BigTable Document  Oriented MongoDB,  CouchDB,  JSON  stores
  • 8.
    • memcached scalability  &  performance • key/value • RDBMS depth  of  functionality
  • 9.
    JSON-style Documents represented  as  BSON {“hello”:  “world”} x16x00x00x00x02hello x00x06x00x00x00world x00x00 http://bsonspec.org
  • 10.
    Flexible “Schemas” {“author”:  “eliot”, {“author”:  “mike”,  “text”:  “...”,  “text”:  “...”}  “tags”:  [“mongodb”]}
  • 11.
  • 12.
    Atomic Update Modifiers
  • 13.
  • 14.
    Replication master slave master master slave slave slave slave master master slave master
  • 15.
    Auto-sharding Shards mongod mongod mongod ... Config mongod mongod mongod Servers mongod mongod mongod mongos mongos ... client
  • 16.
  • 17.
    Best Use Cases T Scaling  Out Caching The  Web High  Volume
  • 18.
    Less Good At highly  transactional ad-­‐hoc  business  intelligence problems  that  require  SQL
  • 19.
    A Quick Aside _id special  key present  in  all  documents unique  across  a  Collection any  type  you  want
  • 20.
    Post {author:  “mike”,  date:  new  Date(),  text:  “my  blog  post...”,  tags:  [“mongodb”,  “intro”]}
  • 21.
    Comment {author:  “eliot”,  date:  new  Date(),  text:  “great  post!”}
  • 22.
    New Post post  =  {author:  “mike”,    date:  new  Date(),    text:  “my  blog  post...”,    tags:  [“mongodb”,  “intro”]} db.posts.save(post)
  • 23.
    Embedding a Comment c  =  {author:  “eliot”,    date:  new  Date(),    text:  “great  post!”} db.posts.update({_id:  post._id},                                  {$push:  {comments:  c}})
  • 24.
  • 25.
    Last 10 Posts db.posts.find()                .sort({date:  -­‐1})                .limit(10)
  • 26.
    Posts Since April1 april_1  =  new  Date(2010,  3,  1) db.posts.find({date:  {$gt:  april_1}})
  • 27.
    Posts Ending With‘Tech’ db.posts.find({text:  /Tech$/})
  • 28.
    Posts With aTag db.posts.find({tags:  “mongodb”}) ...and Fast (multi-­‐key  indexes) db.posts.ensureIndex({tags:  1})
  • 29.
    Indexing / Querying on Embedded Docs (dot  notation) db.posts.ensureIndex({“comments.author”:  1}) db.posts.find({“comments.author”:  “eliot”})
  • 30.
  • 31.
    Basic Paging page  =  2 page_size  =  15 db.posts.find().limit(page_size)                              .skip(page  *  page_size)
  • 32.
    Migration: Adding Titles (just  start  adding  them) post  =  {author:  “mike”,                date:  new  Date(),                text:  “another  blog  post...”,                tags:  [“mongodb”],              title:  “MongoDB  for  Fun  and  Profit”} post_id  =  db.posts.save(post)
  • 33.
    Advanced Queries $gt,  $lt,  $gte,  $lte,  $ne,  $all,  $in,  $nin db.posts.find({$where:  “this.author  ==  ‘mike’  ||                                                this.title  ==  ‘foo’”})
  • 34.
    Other Cool Stuff aggregation  and  map/reduce capped  collections unique  indexes mongo  shell GridFS geo
  • 35.
    slides  will  be  up  on  http://dirolf.com Download MongoDB http://www.mongodb.org and  let  us  know  what  you  think @mdirolf        @mongodb