Bit-fields allow access to individual bits within registers or bytes. They define the number of bits allocated to each field within a structure. Pointers store the address of other variables in memory and can be used to access or modify these variables indirectly. Pointer arithmetic allows pointers to be incremented or decremented to access sequential memory locations represented by an array.
Bit-Fields Unlike someother computer languages, C has a built-in feature, called a bit-field, that allows you to access a single bit. Bit-fields can be useful for a number of reasons, such as: If storage is limited, you can store several Boolean (true/false) variables in one byte. Certain devices transmit status information encoded into one or more bits within a byte Certain encryption routines need to access the bits within a byte. 4
5.
Bit-Fields A bit-fieldmust be a member of a structure or union. It defines how long, in bits, the field is to be. The general form of a bit-field definition is type name: length; type is the type of the bit-field, and length is the number of bits in the field. The type of a bitfield must be int, signed, or unsigned. (C99 also allows a bit-field to be of type _Bool.) Bit-fields are frequently used when analyzing input from a hardware device. 5
6.
Bit-Fields For example, thestatus port of a serial communications adapter might return a status byte organized like this: Bit Meaning When Set 0 Change in clear-to-send line 1 Change in data-set-ready 2 Trailing edge detected 3 Change in receive line 4 Clear-to-send 5 Data-set-ready 6 Telephone ringing 7 Received signal 6 struct status_type { unsigned char delta_cts:1; unsigned char delta_dsr:1; unsigned char tr_edge:1; unsigned char delta_rec:1; unsigned char cts:1; unsigned char dsr:1; unsigned char ring:1; unsigned char rec_line:1; } status;
7.
Bit-Fields You mightuse statements like the ones shown here to enable a program to determine when it can send or receive data: 7 status = get_port_status(); if(status.cts) printf("clear to send"); if(status.dsr) printf("data ready"); Bit Meaning When Set 0 Change in clear-to-send line 1 Change in data-set-ready 2 Trailing edge detected 3 Change in receive line 4 Clear-to-send 5 Data-set-ready 6 Telephone ringing 7 Received signal struct status_type { unsigned char delta_cts:1; unsigned char delta_dsr:1; unsigned char tr_edge:1; unsigned char delta_rec:1; unsigned char cts:1; unsigned char dsr:1; unsigned char ring:1; unsigned char rec_line:1; } status;
Bit-Fields You donot have to name each bit-field. This makes it easy to reach the bit you want, bypassing unused ones. For example, if you only care about the cts and dsr bits, you could declare the status_type structure like this: Also, notice that the bits after dsr do not need to be specified if they are not used. 11 status 7 6 5 4 3 2 1 0 cts dsr
12.
Bit-Fields It isvalid to mix normal structure members with bit-fields. For example 12 What is the Output ?
13.
Bit-Fields It isvalid to mix normal structure members with bit-fields. For example 13 What is the Output ?
14.
Bit-Fields Bit-fields have certainrestrictions you cannot take the address of a bit-field. Bit-fields cannot be arrayed. You cannot know, from machine to machine, whether the fields will run from right to left or from left to right; have some machine dependencies 14
What Are Pointers? A pointer is a variable that holds a memory address. This address is the location of another object (typically another variable) in memory. For example, if one variable contains the address of another variable, the first variable is said to point to the second. 16
17.
Why do weneed Pointer? Simply because it’s there! It is used in some circumstances in C Remember this? scanf(“%d”, &i);
18.
Pointers Pointer Variables Ifa variable is going to be a pointer, it must be declared as such. A pointer declaration consists of a base type, an *, and the variable name. The general form for declaring a pointer variable is type *name; 18
Pointers and Arrays There is a close relationship between pointers and arrays. Consider this program fragment: char str[80], *p1; p1 = str; Here, p1 has been set to the address of the first array element in str. To access the fifth element in str, you could write str[4] or *(p1+4) 33
Pointers AND Functions Pointers are used efficiently with functions. Using pointers provides two main features: Fast data transfer, because only pointers are transferred. Pointers allow the definition of several outputs for the same function. 36
Method 2 iscompletely equivelent to Method 1 which means that: 41
42.
Finally we cansummarize function parameters types 1. Input Parameters (Calling by Value) The parameter values is completely transmitted to the function. This gives the function the ability to read the transmitted data only. 2. Input/Output Parameters (Refrence or Pointer) The parameter pointer (refernce) is transmitted only. This gives the function the ability to read from and write to the original parameters. 3. Output Parameters (Return Value) The return data of the function is assumed as an output parameter. Normally C does not provide other Output parameters except the return value. 42
Pointer with UnknownType (void*) Programmer can define general pointer without specifying a linked data type. This type of pointers called (void pointer). void pointer can not be used normally to manipulated data, it is required to type cast each data access operation. 44
The function prototypeis: int Compare(void* value1, void* value2, int type) which means it takes any two pointers with uncknown type, the third parameter informs the type of the submitted values (1 means integer, 2 means double). 47
48.
Pointer Conversions void *pointers In C, it is permissible to assign a void * pointer to any other type of pointer. It is also permissible to assign any other type of pointer to a void * pointer. A void * pointer is called a generic pointer. The void * pointer is used to specify a pointer whose base type is unknown. The void * type allows a function to specify a parameter that is capable of receiving any type of pointer argument without reporting a type mismatch. It is also used to refer to raw memory (such as that returned by the malloc( ) function described later in this chapter) 48
49.
Multiple Indirection Pointer toPointer You can have a pointer point to another pointer that points to the target value. This situation is called multiple indirection, or pointers to pointers 49
NULL and UnassignedPointers If the pointer is unassigned it will contain an invalid address, it is unsafe to use an unassigned pointer, normally the program will crash. Fllowing program will crash because the (pX) pointer is not pointed to a valid address, it contain a memory gurbage 52
53.
NULL and UnassignedPointers To avoid using unassigned pointers, all pointers must hold a valid address, if not it must hold a zero value. Sometimes zero value called (NULL). Above program may be fixed as shown bellow: 53
An Illustration int i= 5, j = 10; int *ptr; int **pptr; ptr = &i; pptr = &ptr; *ptr = 3; **pptr = 7; ptr = &j; **pptr = 9; *pptr = &i; *ptr = -2; Data Table Name Type Description Value i int integer variable 5 j int integer variable 10
56.
An Illustration int i= 5, j = 10; int *ptr; /* declare a pointer-to-integer variable */ int **pptr; ptr = &i; pptr = &ptr; *ptr = 3; **pptr = 7; ptr = &j; **pptr = 9; *pptr = &i; *ptr = -2; Data Table Name Type Description Value i int integer variable 5 j int integer variable 10 ptr int * integer pointer variable
57.
An Illustration int i= 5, j = 10; int *ptr; int **pptr; /* declare a pointer-to-pointer-to-integer variable */ ptr = &i; pptr = &ptr; *ptr = 3; **pptr = 7; ptr = &j; **pptr = 9; *pptr = &i; *ptr = -2; Data Table Name Type Description Value i int integer variable 5 j int integer variable 10 ptr int * integer pointer variable pptr int ** integer pointer pointer variable Double Indirection
58.
An Illustration int i= 5, j = 10; int *ptr; int **pptr; ptr = &i; /* store address-of i to ptr */ pptr = &ptr; *ptr = 3; **pptr = 7; ptr = &j; **pptr = 9; *pptr = &i; *ptr = -2; Data Table Name Type Description Value i int integer variable 5 j int integer variable 10 ptr int * integer pointer variable address of i pptr int ** integer pointer pointer variable *ptr int de-reference of ptr 5
59.
An Illustration int i= 5, j = 10; int *ptr; int **pptr; ptr = &i; pptr = &ptr; /* store address-of ptr to pptr */ *ptr = 3; **pptr = 7; ptr = &j; **pptr = 9; *pptr = &i; *ptr = -2; Data Table Name Type Description Value i int integer variable 5 j int integer variable 10 ptr int * integer pointer variable address of i pptr int ** integer pointer pointer variable address of ptr *pptr int * de-reference of pptr value of ptr (address of i)
60.
An Illustration int i= 5, j = 10; int *ptr; int **pptr; ptr = &i; pptr = &ptr; *ptr = 3; **pptr = 7; ptr = &j; **pptr = 9; *pptr = &i; *ptr = -2; Data Table Name Type Description Value i int integer variable 3 j int integer variable 10 ptr int * integer pointer variable address of i pptr int ** integer pointer pointer variable address of ptr *ptr int de-reference of ptr 3
61.
An Illustration int i= 5, j = 10; int *ptr; int **pptr; ptr = &i; pptr = &ptr; *ptr = 3; **pptr = 7; ptr = &j; **pptr = 9; *pptr = &i; *ptr = -2; Data Table Name Type Description Value i int integer variable 7 j int integer variable 10 ptr int * integer pointer variable address of i pptr int ** integer pointer pointer variable address of ptr **pptr int de-reference of de-reference of pptr 7
62.
An Illustration int i= 5, j = 10; int *ptr; int **pptr; ptr = &i; pptr = &ptr; *ptr = 3; **pptr = 7; ptr = &j; **pptr = 9; *pptr = &i; *ptr = -2; Data Table Name Type Description Value i int integer variable 7 j int integer variable 10 ptr int * integer pointer variable address of j pptr int ** integer pointer pointer variable address of ptr *ptr int de-reference of ptr 10
63.
An Illustration int i= 5, j = 10; int *ptr; int **pptr; ptr = &i; pptr = &ptr; *ptr = 3; **pptr = 7; ptr = &j; **pptr = 9; *pptr = &i; *ptr = -2; Data Table Name Type Description Value i int integer variable 7 j int integer variable 9 ptr int * integer pointer variable address of j pptr int ** integer pointer pointer variable address of ptr **pptr int de-reference of de-reference of pptr 9
64.
An Illustration int i= 5, j = 10; int *ptr; int **pptr; ptr = &i; pptr = &ptr; *ptr = 3; **pptr = 7; ptr = &j; **pptr = 9; *pptr = &i; *ptr = -2; Data Table Name Type Description Value i int integer variable 7 j int integer variable 9 ptr int * integer pointer variable address of i pptr int ** integer pointer pointer variable address of ptr *pptr int * de-reference of pptr value of ptr (address of i)
65.
An Illustration int i= 5, j = 10; int *ptr; int **pptr; ptr = &i; pptr = &ptr; *ptr = 3; **pptr = 7; ptr = &j; **pptr = 9; *pptr = &i; *ptr = -2; Data Table Name Type Description Value i int integer variable -2 j int integer variable 9 ptr int * integer pointer variable address of i pptr int ** integer pointer pointer variable address of ptr *ptr int de-reference of ptr -2
66.
Pointer Arithmetic What’sptr + 1? The next memory location! What’s ptr - 1? The previous memory location! What’s ptr * 2 and ptr / 2? Invalid operations!!!
67.
Pointer Arithmetic andArray float a[4]; float *ptr; ptr = &(a[2]); *ptr = 3.14; ptr++; *ptr = 9.0; ptr = ptr - 3; *ptr = 6.0; ptr += 2; *ptr = 7.0; Data Table Name Type Description Value a[0] float float array element (variable) ? a[1] float float array element (variable) ? a[2] float float array element (variable) ? a[3] float float array element (variable) ? ptr float * float pointer variable *ptr float de-reference of float pointer variable ?
68.
Pointer Arithmetic andArray float a[4]; float *ptr; ptr = &(a[2]); *ptr = 3.14; ptr++; *ptr = 9.0; ptr = ptr - 3; *ptr = 6.0; ptr += 2; *ptr = 7.0; Data Table Name Type Description Value a[0] float float array element (variable) ? a[1] float float array element (variable) ? a[2] float float array element (variable) ? a[3] float float array element (variable) ? ptr float * float pointer variable address of a[2] *ptr float de-reference of float pointer variable ?
69.
Pointer Arithmetic andArray float a[4]; float *ptr; ptr = &(a[2]); *ptr = 3.14; ptr++; *ptr = 9.0; ptr = ptr - 3; *ptr = 6.0; ptr += 2; *ptr = 7.0; Data Table Name Type Description Value a[0] float float array element (variable) ? a[1] float float array element (variable) ? a[2] float float array element (variable) 3.14 a[3] float float array element (variable) ? ptr float * float pointer variable address of a[2] *ptr float de-reference of float pointer variable 3.14
70.
Pointer Arithmetic andArray float a[4]; float *ptr; ptr = &(a[2]); *ptr = 3.14; ptr++; *ptr = 9.0; ptr = ptr - 3; *ptr = 6.0; ptr += 2; *ptr = 7.0; Data Table Name Type Description Value a[0] float float array element (variable) ? a[1] float float array element (variable) ? a[2] float float array element (variable) 3.14 a[3] float float array element (variable) ? ptr float * float pointer variable address of a[3] *ptr float de-reference of float pointer variable ?
71.
Pointer Arithmetic andArray float a[4]; float *ptr; ptr = &(a[2]); *ptr = 3.14; ptr++; *ptr = 9.0; ptr = ptr - 3; *ptr = 6.0; ptr += 2; *ptr = 7.0; Data Table Name Type Description Value a[0] float float array element (variable) ? a[1] float float array element (variable) ? a[2] float float array element (variable) 3.14 a[3] float float array element (variable) 9.0 ptr float * float pointer variable address of a[3] *ptr float de-reference of float pointer variable 9.0
72.
Pointer Arithmetic andArray float a[4]; float *ptr; ptr = &(a[2]); *ptr = 3.14; ptr++; *ptr = 9.0; ptr = ptr - 3; *ptr = 6.0; ptr += 2; *ptr = 7.0; Data Table Name Type Description Value a[0] float float array element (variable) ? a[1] float float array element (variable) ? a[2] float float array element (variable) 3.14 a[3] float float array element (variable) 9.0 ptr float * float pointer variable address of a[0] *ptr float de-reference of float pointer variable ?
73.
Pointer Arithmetic andArray float a[4]; float *ptr; ptr = &(a[2]); *ptr = 3.14; ptr++; *ptr = 9.0; ptr = ptr - 3; *ptr = 6.0; ptr += 2; *ptr = 7.0; Data Table Name Type Description Value a[0] float float array element (variable) 6.0 a[1] float float array element (variable) ? a[2] float float array element (variable) 3.14 a[3] float float array element (variable) 9.0 ptr float * float pointer variable address of a[0] *ptr float de-reference of float pointer variable 6.0
74.
Pointer Arithmetic andArray float a[4]; float *ptr; ptr = &(a[2]); *ptr = 3.14; ptr++; *ptr = 9.0; ptr = ptr - 3; *ptr = 6.0; ptr += 2; *ptr = 7.0; Data Table Name Type Description Value a[0] float float array element (variable) 6.0 a[1] float float array element (variable) ? a[2] float float array element (variable) 3.14 a[3] float float array element (variable) 9.0 ptr float * float pointer variable address of a[2] *ptr float de-reference of float pointer variable 3.14
75.
Pointer Arithmetic andArray float a[4]; float *ptr; ptr = &(a[2]); *ptr = 3.14; ptr++; *ptr = 9.0; ptr = ptr - 3; *ptr = 6.0; ptr += 2; *ptr = 7.0; Data Table Name Type Description Value a[0] float float array element (variable) 6.0 a[1] float float array element (variable) ? a[2] float float array element (variable) 7.0 a[3] float float array element (variable) 9.0 ptr float * float pointer variable address of a[2] *ptr float de-reference of float pointer variable 7.0
76.
Pointer to Function powerful feature of C is the function pointer. A function has a physical location in memory that can be assigned to a pointer. This address is the entry point of the function and it is the address used when the function is called. Once a pointer points to a function, the function can be called through that pointer. Function pointers also allow functions to be passed as arguments to other functions 76
How to ReadC complex pointer expression Operator Precedence Associative (),[] 1 Left to Right *,Identifier 2 Right to Left Data Type 3 – 81 Before We Learn How to Read Complex Array we should first know precedence and associative . •Priority : Operator precedence describes the order in which C reads expressions •order : Order operators of equal precedence in an expression are applied Before Reading Article You Should know Precedence and Associative Table
How to ReadC complex pointer expression char (* ptr)[5] Step 1 : •Observe Above Precedence Table •[] and () have Same Priority •Using Associativity , Highest Priority Element is decided •Associativity is from Left to Right First Priority is Given to “()” 83
84.
How to ReadC complex pointer expression 84 Step 2 : •Between Pair of Brackets again we have to decide which one has highest priority ? ‘*’ or ‘ptr’ ? •* and Identifier ptr have Same Priority •Associativity is from Right to Left First Priority is Given to “ptr”
85.
How to ReadC complex pointer expression 85 Read it as – ptr is pointer to a one dimensional array having size five which can store data of type char
86.
How to ReadC complex pointer expression examples 86
87.
How to ReadC complex pointer expression examples 87
88.
How to ReadC complex pointer expression examples 88
89.
How to ReadC complex pointer expression examples 89
90.
How to ReadC complex pointer expression examples Test Your self 90
91.
Pointers Tricks 91 How toRead C complex pointer Pointers on Embedded C Modularity Pointer with Constant
For example “UART”(send data) Send_data(u16 data) { USART_Init (); USART_Trans_Int_Enable(); USART_Trans_Enable(); USART_Transmit(u16 data); } 98 USART_Init (){…} USART_Trans_Int_Enable (){…}USART_Trans_Enable (){…} USART_Transmit(u16 data); {…} UARTSend dataByte Byte Once the UART sent the Data, The TX interrupt will insert and the CPU will call ISR(USART_TXC_vect) { …….. }
99.
For example “UART”(send data) Send_data(u16 data) { USART_Init (); USART_Trans_Int_Enable(); USART_Trans_Enable(); USART_Transmit(u16 data); } 99 USART_Init (){…} USART_Trans_Int_Enable (){…}USART_Trans_Enable (){…} USART_Transmit(u16 data); {…} UARTSend dataByte Byte Once the UART sent the Data, The TX interrupt will insert and the CPU will call ISR(USART_TXC_vect) { …….. }
Pointers Tricks 101 How toRead C complex pointer Pointers on Embedded C Modularity Pointer with Constant
102.
Variable Quantifiers -const const is used with a datatype declaration or definition to specify an unchanging value const objects may not be changed 102
103.
Variable Quantifiers -const const is used with a datatype declaration or definition to specify an unchanging value const objects may not be changed 103
References 111 CThe Complete Reference 4th Ed Herbert Schildt A Tutorial on Data Representation std::printf, std::fprintf, std::sprintf, std::snprintf….. C Programming for Engineers, Dr. Mohamed Sobh C programming expert. fresh2refresh.com/c-programming C programming Interview questions and answers C – Preprocessor directives Constant Pointers and Pointers to Constant A Subtle Difference in C Programming