*Memos:
- My post explains how to set and get dtype.
- My post explains how to set and get device.
- My post explains how to set requires_grad and get grad.
- My post explains how to set
out
argument.
You can set keepdim
argument as shown below:
*Memos:
- I selected some popular
keepdim
argument functions such as sum(), prod() mean(), median(), min(), max(), argmin(), argmax(), all() and any(). - Basically,
keepdim
(Optional-Default:False
-Type:bool
) can keep the dimension ofinput
tensor. - Sometimes,
keepdim
needs to be used withdim
.
sum()
. *My post explains sum()
:
import torch my_tensor = torch.tensor([1, 2, 3, 4]) torch.sum(input=my_tensor) torch.sum(input=my_tensor, dim=0) # tensor(10) torch.sum(input=my_tensor, dim=0, keepdim=True) # tensor([10])
prod()
. *My post explains prod()
:
import torch my_tensor = torch.tensor([1, 2, 3, 4]) torch.prod(input=my_tensor) torch.prod(input=my_tensor, dim=0) # tensor(24) torch.prod(input=my_tensor, dim=0, keepdim=True) # tensor([24])
mean()
. *My post explains mean()
:
import torch my_tensor = torch.tensor([5., 4., 7., 7.]) torch.mean(input=my_tensor) torch.mean(input=my_tensor, dim=0) # tensor(5.7500) torch.mean(input=my_tensor, dim=0, keepdim=True) tensor([5.7500])
median()
. *My post explains median()
:
import torch my_tensor = torch.tensor([5, 4, 7, 7]) torch.median(input=my_tensor, dim=0) # torch.return_types.median( # values=tensor(5), # indices=tensor(0)) torch.median(input=my_tensor, dim=0, keepdim=True) # torch.return_types.median( # values=tensor([5]), # indices=tensor([0]))
min()
. *My post explains min()
:
import torch my_tensor = torch.tensor([5, 4, 7, 7]) torch.min(input=my_tensor, dim=0) # torch.return_types.min( # values=tensor(4), # indices=tensor(1)) torch.min(input=my_tensor, dim=0, keepdim=True) # torch.return_types.min( # values=tensor([4]), # indices=tensor([1]))
max()
. *My post explains max()
:
import torch my_tensor = torch.tensor([5, 4, 7, 7]) torch.max(input=my_tensor, dim=0) # torch.return_types.max( # values=tensor(7), # indices=tensor(2)) torch.max(input=my_tensor, dim=0, keepdim=True) # torch.return_types.max( # values=tensor([7]), # indices=tensor([2]))
argmin()
. *My post explains argmin()
:
import torch my_tensor = torch.tensor([5, 4, 7, 7]) torch.argmin(input=my_tensor) torch.argmin(input=my_tensor, dim=0) # tensor(1) torch.argmin(input=my_tensor, keepdim=True) torch.argmin(input=my_tensor, dim=0, keepdim=True) # tensor([1])
argmax()
. *My post explains argmax()
:
import torch my_tensor = torch.tensor([5, 4, 7, 7]) torch.argmax(input=my_tensor) torch.argmax(input=my_tensor, dim=0) # tensor(2) torch.argmax(input=my_tensor, keepdim=True) torch.argmax(input=my_tensor, dim=0, keepdim=True) # tensor([2])
all()
. *My post explains all()
:
import torch my_tensor = torch.tensor([True, False, True, False]) torch.all(input=my_tensor) torch.all(input=my_tensor, dim=0) # tensor(False) torch.all(input=my_tensor, keepdim=True) torch.all(input=my_tensor, dim=0, keepdim=True) # tensor([False])
any()
. *My post explains any()
:
import torch my_tensor = torch.tensor([True, False, True, False]) torch.any(input=my_tensor) torch.any(input=my_tensor, dim=0) # tensor(True) torch.any(input=my_tensor, keepdim=True) torch.any(input=my_tensor, dim=0, keepdim=True) # tensor([True])
Top comments (0)