*Memos:
- My post explains sum() and nansum().
- My post explains mean() and nanmean().
- My post explains median() and nanmedian().
- My post explains cumsum() and cumprod().
prod() can get the 0D or more D tensor of zero or more product's elements from the 0D or more D tensor of zero or more elements as shown below:
*Memos:
-
prod()can be used with torch or a tensor. - The 1st argument(
input) withtorchor using a tensor(Required-Type:tensorofint,float,complexorbool). - The 2nd argument with
torchor the 1st argument with a tensor isdim(Optional-Type:int). - The 3rd argument with
torchor the 2nd argument with a tensor iskeepdim(Optional-Default:False-Type:bool): *Memos:-
keepdim=must be used withdim=. - My post explains
keepdimargument.
-
- There is
dtypeargument withtorch(Optional-Default:None-Type:dtype): *Memos:- If it's
None, it's inferred frominputor a tensor. -
dtype=must be used. - My post explains
dtypeargument.
- If it's
- The empty 1D or more D
inputtensor or tensor withoutdimor with the deepestdimgets a one.
import torch my_tensor = torch.tensor([1, 2, 3, 4]) torch.prod(input=my_tensor) my_tensor.prod() torch.prod(input=my_tensor, dim=0) torch.prod(input=my_tensor, dim=-1) # tensor(24) my_tensor = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]) torch.prod(input=my_tensor) # tensor(40320) torch.prod(input=my_tensor, dim=0) torch.prod(input=my_tensor, dim=-2) # tensor([5, 12, 21, 32]) torch.prod(input=my_tensor, dim=1) torch.prod(input=my_tensor, dim=-1) # tensor([24, 1680]) my_tensor = torch.tensor([[1., 2., 3., 4.], [5., 6., 7., 8.]]) torch.prod(input=my_tensor) # tensor(40320.) my_tensor = torch.tensor([[1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j], [5.+0.j, 6.+0.j, 7.+0.j, 8.+0.j]]) torch.prod(input=my_tensor) # tensor(40320.+0.j) my_tensor = torch.tensor([[True, False, True, False], [False, True, False, True]]) torch.prod(input=my_tensor) # tensor(0) my_tensor = torch.tensor([]) torch.prod(input=my_tensor) # tensor(1.) cartesian_prod() can get the 1D or 2D tensor of zero or more cartesian product's elements from the one or more 1D tensors of zero or more elements as shown below:
*Memos:
-
cartesian_prod()can be used withtorchbut not with a tensor. - The 1st or more arguments with
torchare*tensors(Required at least one tensor-Type:tensorofint,float,complexorbool). *Memos:- Don't use any keyword like
*tensors=ortensors=. - Tensors must be the same type.
- Don't use any keyword like
import torch my_tensor = torch.tensor([1, 2, 3, 4]) torch.cartesian_prod(my_tensor) # tensor([1, 2, 3, 4]) my_tensor = torch.tensor([1., 2., 3., 4.]) torch.cartesian_prod(my_tensor) # tensor([1., 2., 3., 4.]) my_tensor = torch.tensor([1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j]) torch.cartesian_prod(my_tensor) # tensor([1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j]) my_tensor = torch.tensor([True, False, True, False]) torch.cartesian_prod(my_tensor) # tensor([True, False, True, False]) tensor1 = torch.tensor([1, 2, 3, 4]) tensor2 = torch.tensor([5, 6]) torch.cartesian_prod(tensor1, tensor2) # tensor([[1, 5], # [1, 6], # [2, 5], # [2, 6], # [3, 5], # [3, 6], # [4, 5], # [4, 6]]) tensor1 = torch.tensor([1, 2, 3, 4]) tensor2 = torch.tensor([5, 6]) tensor3 = torch.tensor([7, 8, 9]) torch.cartesian_prod(tensor1, tensor2, tensor3) # tensor([[1, 5, 7], # [1, 5, 8], # [1, 5, 9], # [1, 6, 7], # [1, 6, 8], # [1, 6, 9], # [2, 5, 7], # [2, 5, 8], # [2, 5, 9], # [2, 6, 7], # [2, 6, 8], # [2, 6, 9], # [3, 5, 7], # [3, 5, 8], # [3, 5, 9], # [3, 6, 7], # [3, 6, 8], # [3, 6, 9], # [4, 5, 7], # [4, 5, 8], # [4, 5, 9], # [4, 6, 7], # [4, 6, 8], # [4, 6, 9]])
Top comments (0)