*Memos:
- My post explains prod() and cartesian_prod().
- My post explains mean() and nanmean().
- My post explains median() and nanmedian().
- My post explains cumsum() and cumprod().
- My post explains
torch.nan
andtorch.inf
.
sum() can get the 0D or more D tensor of zero or more sum's elements, normally treating one or more NaNs(Not a Numbers) from the 0D or more D tensor of zero or more elements as shown below:
*Memos:
-
sum()
can be used with torch or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
,complex
orbool
). - The 2nd argument with
torch
or the 1st argument with a tensor isdim
(Optional-Type:int
,tuple
ofint
orlist
ofint
). - The 3rd argument with
torch
or the 2nd argument with a tensor iskeepdim
(Optional-Default:False
-Type:bool
): *Memos:-
keepdim=
must be used withdim=
. - My post explains
keepdim
argument.
-
- There is
dtype
argument withtorch
(Optional-Default:None
-Type:dtype): *Memos:- If it's
None
, it's inferred frominput
or a tensor. -
dtype=
must be used. - My post explains
dtype
argument.
- If it's
- Normally, the arithmetic operation with a NaN results in a NaN.
- The empty 1D or more D
input
tensor or tensor withoutdim
or with the deepestdim
gets a zero.
import torch my_tensor = torch.tensor([1, 2, 3, 4]) torch.sum(input=my_tensor) my_tensor.sum() torch.sum(input=my_tensor, dim=0) torch.sum(input=my_tensor, dim=-1) torch.sum(input=my_tensor, dim=(0,)) torch.sum(input=my_tensor, dim=(-1,)) # tensor(10) my_tensor = torch.tensor([1, 2, torch.nan, 4]) torch.sum(input=my_tensor) # tensor(nan) my_tensor = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]) torch.sum(input=my_tensor) torch.sum(input=my_tensor, dim=(0, 1)) torch.sum(input=my_tensor, dim=(0, -1)) torch.sum(input=my_tensor, dim=(1, 0)) torch.sum(input=my_tensor, dim=(1, -2)) torch.sum(input=my_tensor, dim=(-1, 0)) torch.sum(input=my_tensor, dim=(-1, -2)) torch.sum(input=my_tensor, dim=(-2, 1)) torch.sum(input=my_tensor, dim=(-2, -1)) # tensor(36) torch.sum(input=my_tensor, dim=0) torch.sum(input=my_tensor, dim=-2) torch.sum(input=my_tensor, dim=(0,)) torch.sum(input=my_tensor, dim=(-2,)) # tensor([6, 8, 10, 12]) torch.sum(input=my_tensor, dim=1) torch.sum(input=my_tensor, dim=-1) torch.sum(input=my_tensor, dim=(1,)) torch.sum(input=my_tensor, dim=(-1,)) # tensor([10, 26]) my_tensor = torch.tensor([[1, 2, torch.nan, 4], [torch.nan, 6, 7, 8]]) torch.sum(input=my_tensor) # tensor(nan) torch.sum(input=my_tensor, dim=0) # tensor([nan, 8., nan, 12.]) torch.sum(input=my_tensor, dim=1) # tensor([nan, nan]) my_tensor = torch.tensor([[1., 2., 3., 4.], [5., 6., 7., 8.]]) torch.sum(input=my_tensor) # tensor(36.) my_tensor = torch.tensor([[1, 2, torch.nan, 4], [torch.nan, 6, 7, 8]]) torch.sum(input=my_tensor) # tensor(nan) my_tensor = torch.tensor([[1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j], [5.+0.j, 6.+0.j, 7.+0.j, 8.+0.j]]) torch.sum(input=my_tensor) # tensor(36.+0.j) my_tensor = torch.tensor([[1.+0.j, 2.+0.j, torch.nan, 4.+0.j], [torch.nan, 6.+0.j, 7.+0.j, 8.+0.j]]) torch.sum(input=my_tensor) # tensor(nan+0.j) my_tensor = torch.tensor([[True, False, True, False], [False, True, False, True]]) torch.sum(input=my_tensor) # tensor(4) my_tensor = torch.tensor([]) torch.sum(input=my_tensor) # tensor(0.)
nansum() can get the 0D or more D tensor of zero or more sum's elements, treating nan
as zero from the 0D or more D tensor of zero or more elements as shown below:
*Memos:
-
nansum()
can be used withtorch
or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
orbool
). - The 2nd argument with
torch
or the 1st argument with a tensor isdim
(Optional-Type:int
,tuple
ofint
orlist
ofint
). - The 3rd argument with
torch
or the 2nd argument with a tensor iskeepdim
(Optional-Default:False
-Type:bool
): *Memos:-
keepdim=
must be used withdim=
. - My post explains
keepdim
argument.
-
- There is
dtype
argument withtorch
(Optional-Default:None
-Type:dtype): *Memos:- If it's
None
, it's inferred frominput
or a tensor. -
dtype=
must be used. - My post explains
dtype
argument.
- If it's
- Normally, the arithmetic operation with a NaN results in a NaN.
- The empty 1D or more D
input
tensor or tensor withoutdim
or with the deepestdim
gets a zero.
import torch my_tensor = torch.tensor([1., 2., torch.nan, 4.]) torch.nansum(input=my_tensor) my_tensor.nansum() torch.nansum(input=my_tensor, dim=0) torch.nansum(input=my_tensor, dim=-1) torch.nansum(input=my_tensor, dim=(0,)) torch.nansum(input=my_tensor, dim=(-1,)) # tensor(7.) my_tensor = torch.tensor([[1., 2., torch.nan, 4.], [torch.nan, 6., 7., 8.]]) torch.nansum(input=my_tensor) torch.nansum(input=my_tensor, dim=(0, 1)) torch.nansum(input=my_tensor, dim=(0, -1)) torch.nansum(input=my_tensor, dim=(1, 0)) torch.nansum(input=my_tensor, dim=(1, -2)) torch.nansum(input=my_tensor, dim=(-1, 0)) torch.nansum(input=my_tensor, dim=(-1, -2)) torch.nansum(input=my_tensor, dim=(-2, 1)) torch.nansum(input=my_tensor, dim=(-2, -1)) # tensor(28.) torch.nansum(input=my_tensor, dim=0) torch.nansum(input=my_tensor, dim=-2) torch.nansum(input=my_tensor, dim=(0,)) torch.nansum(input=my_tensor, dim=(-2,)) # tensor([1., 8., 7., 12.]) torch.nansum(input=my_tensor, dim=1) torch.nansum(input=my_tensor, dim=-1) torch.nansum(input=my_tensor, dim=(1,)) torch.nansum(input=my_tensor, dim=(-1,)) # tensor([7., 21.]) my_tensor = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]) torch.nansum(input=my_tensor) # tensor(36) my_tensor = torch.tensor([[True, False, True, False], [False, True, False, True]]) torch.nansum(input=my_tensor) # tensor(4) my_tensor = torch.tensor([]) torch.nansum(input=my_tensor) # tensor(0.)
Top comments (0)