*Memos:
- My post explains minimum() and maximum().
- My post explains fmin() and fmax().
- My post explains argmin() and argmax().
- My post explains aminmax(), amin() and amax().
- My post explains kthvalue() and topk().
- My post explains cummin() and cummax().
min() can get the 0D of the 1st one minimum element or two of the 0D or more D tensors of the 1st zero or more minimum elements and their indices from the one or two 0D or more D tensors of zero or more elements as shown below:
*Memos:
-
min()
can be used with torch or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
orbool
). - The 2nd argument with
torch
or the 1st argument isdim
(Optional-Type:int
). *Settingdim
can get zero or more 1st minimum elements and their indices. - The 2nd argument with
torch
or the 1st argument isother
(Optional-Type:tensor
ofint
,float
orbool
): *Memos:- It can only be used with
input
. - This is the functionality of minimum().
- It can only be used with
- The 3rd argument with
torch
or the 2nd argument iskeepdim
(Optional-Default:False
-Type:bool
): *Memos:- It must be used with
dim
and withoutother
. - My post explains
keepdim
argument.
- It must be used with
- There is
out
argument withtorch
(Optional-Default:None
-Type:tensor
,tuple
(tensor
,tensor
) orlist
(tensor
,tensor
)): *Memos:- The type of
tensor
must be used withoutdim
andkeepdim
. - The type of
tuple
(tensor
,tensor
) orlist
(tensor
,tensor
) must be used withdim
and withoutother
. -
out=
must be used. - My post explains
out
argument.
- The type of
- The empty 2D or more D tensor without
other
tensor doesn't work if not settingdim
. - The empty 1D tensor without
other
tensor doesn't work even if settingdim
.
import torch my_tensor = torch.tensor([[5, 4, 7, 7], [6, 5, 3, 5], [3, 8, 9, 3]]) torch.min(input=my_tensor) my_tensor.min() # tensor(3) torch.min(input=my_tensor, dim=0) torch.min(input=my_tensor, dim=-2) # torch.return_types.min( # values=tensor([3, 4, 3, 3]), # indices=tensor([2, 0, 1, 2])) torch.min(input=my_tensor, dim=1) torch.min(input=my_tensor, dim=-1) # torch.return_types.min( # values=tensor([4, 3, 3]), # indices=tensor([1, 2, 0])) tensor1 = torch.tensor([5, 4, 7, 7]) tensor2 = torch.tensor([[6, 5, 3, 5], [3, 8, 9, 3]]) torch.min(input=tensor1, other=tensor2) # tensor([[5, 4, 3, 5], # [3, 4, 7, 3]]) tensor1 = torch.tensor([5., 4., 7., 7.]) tensor2 = torch.tensor([[6., 5., 3., 5.], [3., 8., 9., 3.]]) torch.min(input=tensor1, other=tensor2) # tensor([[5., 4., 3., 5.], # [3., 4., 7., 3.]]) tensor1 = torch.tensor([True, False, True, False]) tensor2 = torch.tensor([[True, False, True, False], [False, True, False, True]]) torch.min(input=tensor1, other=tensor2) # tensor([[True, False, True, False], # [False, False, False, False]]) my_tensor = torch.tensor([]) my_tensor = torch.tensor([[]]) my_tensor = torch.tensor([[[]]]) torch.min(input=my_tensor) # Error my_tensor = torch.tensor([]) torch.min(input=my_tensor, dim=0) # Error my_tensor = torch.tensor([[]]) torch.min(input=my_tensor, dim=0) # torch.return_types.min( # values=tensor([]), # indices=tensor([], dtype=torch.int64)) my_tensor = torch.tensor([[[]]]) torch.min(input=my_tensor, dim=0) # torch.return_types.min( # values=tensor([], size=(1, 0)), # indices=tensor([], size=(1, 0), dtype=torch.int64))
max() can get the 0D of the 1st one maximum element or two of the 0D or more D tensors of the 1st zero or more maximum elements and their indices from the one or two 0D or more D tensors of zero or more elements as shown below:
-
max()
can be used withtorch
or a tensor. - The 1st argument(
input
) withtorch
or using a tensor(Required-Type:tensor
ofint
,float
orbool
). - The 2nd argument with
torch
or the 1st argument isdim
(Optional-Type:int
). *Settingdim
can get zero or more 1st maximum elements and their indices. - The 2nd argument with
torch
or the 1st argument isother
(Optional-Type:tensor
ofint
,float
orbool
): *Memos:- It can only be used with
input
. - This is the functionality of maximum().
- It can only be used with
- The 3rd argument with
torch
or the 2nd argument iskeepdim
(Optional-Default:False
-Type:bool
): *Memos:- It must be used with
dim
and withoutother
. - My post explains
keepdim
argument.
- It must be used with
- There is
out
argument withtorch
(Optional-Default:None
-Type:tensor
,tuple
(tensor
,tensor
) orlist
(tensor
,tensor
)): *Memos:- The type of
tensor
must be used withoutdim
andkeepdim
. - The type of
tuple
(tensor
,tensor
) orlist
(tensor
,tensor
) must be used withdim
and withoutother
. -
out=
must be used. - My post explains
out
argument.
- The type of
- The empty 2D or more D tensor without
other
tensor doesn't work if not settingdim
. - The empty 1D
input
tesnor or tensor withoutother
tensor doesn't work even if settingdim
.
import torch my_tensor = torch.tensor([[5, 4, 7, 7], [6, 5, 3, 5], [3, 8, 9, 3]]) torch.max(input=my_tensor) my_tensor.max() # tensor(9) torch.max(input=my_tensor, dim=0) torch.max(input=my_tensor, dim=-2) # torch.return_types.max( # values=tensor([6, 8, 9, 7]), # indices=tensor([1, 2, 2, 0])) torch.max(input=my_tensor, dim=1) torch.max(input=my_tensor, dim=-1) # torch.return_types.max( # values=tensor([7, 6, 9]), # indices=tensor([2, 0, 2])) tensor1 = torch.tensor([5, 4, 7, 7]) tensor2 = torch.tensor([[6, 5, 3, 5], [3, 8, 9, 3]]) torch.max(input=tensor1, other=tensor2) # tensor([[6, 5, 7, 7], # [5, 8, 9, 7]]) tensor1 = torch.tensor([5., 4., 7., 7.]) tensor2 = torch.tensor([[6., 5., 3., 5.], [3., 8., 9., 3.]]) torch.max(input=tensor1, other=tensor2) # tensor([[6., 5., 7., 7.], # [5., 8., 9., 7.]]) tensor1 = torch.tensor([True, False, True, False]) tensor2 = torch.tensor([[True, False, True, False], [False, True, False, True]]) torch.max(input=tensor1, other=tensor2) # tensor([[True, False, True, False], # [True, True, True, True]]) my_tensor = torch.tensor([]) my_tensor = torch.tensor([[]]) my_tensor = torch.tensor([[[]]]) torch.max(input=my_tensor) # Error my_tensor = torch.tensor([]) torch.max(input=my_tensor, dim=0) # Error my_tensor = torch.tensor([[]]) torch.max(input=my_tensor, dim=0) # torch.return_types.max( # values=tensor([]), # indices=tensor([], dtype=torch.int64)) my_tensor = torch.tensor([[[]]]) torch.max(input=my_tensor, dim=0) # torch.return_types.max( # values=tensor([], size=(1, 0)), # indices=tensor([], size=(1, 0), dtype=torch.int64))
Top comments (0)