PythonForDataScience Cheat Sheet Matplotlib Learn Python Interactively at www.DataCamp.com Matplotlib DataCamp Learn Python for Data Science Interactively Prepare The Data Also see Lists & NumPy Matplotlib is a Python 2D plotting library which produces publication-quality figures in a variety of hardcopy formats and interactive environments across platforms. 1 >>> import numpy as np >>> x = np.linspace(0, 10, 100) >>> y = np.cos(x) >>> z = np.sin(x) Show Plot >>> plt.show() Save Plot Save figures >>> plt.savefig('foo.png') Save transparent figures >>> plt.savefig('foo.png', transparent=True) 6 5 >>> fig = plt.figure() >>> fig2 = plt.figure(figsize=plt.figaspect(2.0)) Create Plot2 Plot Anatomy & Workflow All plotting is done with respect to an Axes. In most cases, a subplot will fit your needs. A subplot is an axes on a grid system. >>> fig.add_axes() >>> ax1 = fig.add_subplot(221) # row-col-num >>> ax3 = fig.add_subplot(212) >>> fig3, axes = plt.subplots(nrows=2,ncols=2) >>> fig4, axes2 = plt.subplots(ncols=3) Customize Plot Colors, Color Bars & Color Maps Markers Linestyles Mathtext Text & Annotations Limits, Legends & Layouts The basic steps to creating plots with matplotlib are: 1Prepare data 2Create plot 3Plot 4 Customize plot 5Save plot 6Show plot >>> import matplotlib.pyplot as plt >>> x = [1,2,3,4] >>> y = [10,20,25,30] >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x, y, color='lightblue', linewidth=3) >>> ax.scatter([2,4,6], [5,15,25], color='darkgreen', marker='^') >>> ax.set_xlim(1, 6.5) >>> plt.savefig('foo.png') >>> plt.show() Step 3, 4 Step 2 Step 1 Step 3 Step 6 Plot Anatomy Workflow 4 Limits & Autoscaling >>> ax.margins(x=0.0,y=0.1) Add padding to a plot >>> ax.axis('equal') Set the aspect ratio of the plot to 1 >>> ax.set(xlim=[0,10.5],ylim=[-1.5,1.5]) Set limits for x-and y-axis >>> ax.set_xlim(0,10.5) Set limits for x-axis Legends >>> ax.set(title='An Example Axes', Set a title and x-and y-axis labels ylabel='Y-Axis', xlabel='X-Axis') >>> ax.legend(loc='best') No overlapping plot elements Ticks >>> ax.xaxis.set(ticks=range(1,5), Manually set x-ticks ticklabels=[3,100,-12,"foo"]) >>> ax.tick_params(axis='y', Make y-ticks longer and go in and out direction='inout', length=10) Subplot Spacing >>> fig3.subplots_adjust(wspace=0.5, Adjust the spacing between subplots hspace=0.3, left=0.125, right=0.9, top=0.9, bottom=0.1) >>> fig.tight_layout() Fit subplot(s) in to the figure area Axis Spines >>> ax1.spines['top'].set_visible(False) Make the top axis line for a plot invisible >>> ax1.spines['bottom'].set_position(('outward',10))Move the bottom axis line outward Figure Axes >>> data = 2 * np.random.random((10, 10)) >>> data2 = 3 * np.random.random((10, 10)) >>> Y, X = np.mgrid[-3:3:100j, -3:3:100j] >>> U = -1 - X**2 + Y >>> V = 1 + X - Y**2 >>> from matplotlib.cbook import get_sample_data >>> img = np.load(get_sample_data('axes_grid/bivariate_normal.npy')) >>> lines = ax.plot(x,y) Draw points with lines or markers connecting them >>> ax.scatter(x,y) Draw unconnected points, scaled or colored >>> axes[0,0].bar([1,2,3],[3,4,5]) Plot vertical rectangles (constant width) >>> axes[1,0].barh([0.5,1,2.5],[0,1,2]) Plot horiontal rectangles (constant height) >>> axes[1,1].axhline(0.45) Draw a horizontal line across axes >>> axes[0,1].axvline(0.65) Draw a vertical line across axes >>> ax.fill(x,y,color='blue') Draw filled polygons >>> ax.fill_between(x,y,color='yellow') Fill between y-values and 0 Plotting Routines3 1D Data >>> fig, ax = plt.subplots() >>> im = ax.imshow(img, Colormapped or RGB arrays cmap='gist_earth', interpolation='nearest', vmin=-2, vmax=2) 2D Data or Images Vector Fields >>> axes[0,1].arrow(0,0,0.5,0.5) Add an arrow to the axes >>> axes[1,1].quiver(y,z) Plot a 2D field of arrows >>> axes[0,1].streamplot(X,Y,U,V) Plot 2D vector fields Data Distributions >>> ax1.hist(y) Plot a histogram >>> ax3.boxplot(y) Make a box and whisker plot >>> ax3.violinplot(z) Make a violin plot >>> axes2[0].pcolor(data2) Pseudocolor plot of 2D array >>> axes2[0].pcolormesh(data) Pseudocolor plot of 2D array >>> CS = plt.contour(Y,X,U) Plot contours >>> axes2[2].contourf(data1) Plot filled contours >>> axes2[2]= ax.clabel(CS) Label a contour plot Figure Axes/Subplot Y-axis X-axis 1D Data 2D Data or Images >>> plt.plot(x, x, x, x**2, x, x**3) >>> ax.plot(x, y, alpha = 0.4) >>> ax.plot(x, y, c='k') >>> fig.colorbar(im, orientation='horizontal') >>> im = ax.imshow(img, cmap='seismic') >>> fig, ax = plt.subplots() >>> ax.scatter(x,y,marker=".") >>> ax.plot(x,y,marker="o") >>> plt.title(r'$sigma_i=15$', fontsize=20) >>> ax.text(1, -2.1, 'Example Graph', style='italic') >>> ax.annotate("Sine", xy=(8, 0), xycoords='data', xytext=(10.5, 0), textcoords='data', arrowprops=dict(arrowstyle="->", connectionstyle="arc3"),) >>> plt.plot(x,y,linewidth=4.0) >>> plt.plot(x,y,ls='solid') >>> plt.plot(x,y,ls='--') >>> plt.plot(x,y,'--',x**2,y**2,'-.') >>> plt.setp(lines,color='r',linewidth=4.0) >>> import matplotlib.pyplot as plt Close & Clear >>> plt.cla() Clear an axis >>> plt.clf() Clear the entire figure >>> plt.close() Close a window

Python matplotlib cheat_sheet

  • 1.
    PythonForDataScience Cheat Sheet Matplotlib LearnPython Interactively at www.DataCamp.com Matplotlib DataCamp Learn Python for Data Science Interactively Prepare The Data Also see Lists & NumPy Matplotlib is a Python 2D plotting library which produces publication-quality figures in a variety of hardcopy formats and interactive environments across platforms. 1 >>> import numpy as np >>> x = np.linspace(0, 10, 100) >>> y = np.cos(x) >>> z = np.sin(x) Show Plot >>> plt.show() Save Plot Save figures >>> plt.savefig('foo.png') Save transparent figures >>> plt.savefig('foo.png', transparent=True) 6 5 >>> fig = plt.figure() >>> fig2 = plt.figure(figsize=plt.figaspect(2.0)) Create Plot2 Plot Anatomy & Workflow All plotting is done with respect to an Axes. In most cases, a subplot will fit your needs. A subplot is an axes on a grid system. >>> fig.add_axes() >>> ax1 = fig.add_subplot(221) # row-col-num >>> ax3 = fig.add_subplot(212) >>> fig3, axes = plt.subplots(nrows=2,ncols=2) >>> fig4, axes2 = plt.subplots(ncols=3) Customize Plot Colors, Color Bars & Color Maps Markers Linestyles Mathtext Text & Annotations Limits, Legends & Layouts The basic steps to creating plots with matplotlib are: 1Prepare data 2Create plot 3Plot 4 Customize plot 5Save plot 6Show plot >>> import matplotlib.pyplot as plt >>> x = [1,2,3,4] >>> y = [10,20,25,30] >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x, y, color='lightblue', linewidth=3) >>> ax.scatter([2,4,6], [5,15,25], color='darkgreen', marker='^') >>> ax.set_xlim(1, 6.5) >>> plt.savefig('foo.png') >>> plt.show() Step 3, 4 Step 2 Step 1 Step 3 Step 6 Plot Anatomy Workflow 4 Limits & Autoscaling >>> ax.margins(x=0.0,y=0.1) Add padding to a plot >>> ax.axis('equal') Set the aspect ratio of the plot to 1 >>> ax.set(xlim=[0,10.5],ylim=[-1.5,1.5]) Set limits for x-and y-axis >>> ax.set_xlim(0,10.5) Set limits for x-axis Legends >>> ax.set(title='An Example Axes', Set a title and x-and y-axis labels ylabel='Y-Axis', xlabel='X-Axis') >>> ax.legend(loc='best') No overlapping plot elements Ticks >>> ax.xaxis.set(ticks=range(1,5), Manually set x-ticks ticklabels=[3,100,-12,"foo"]) >>> ax.tick_params(axis='y', Make y-ticks longer and go in and out direction='inout', length=10) Subplot Spacing >>> fig3.subplots_adjust(wspace=0.5, Adjust the spacing between subplots hspace=0.3, left=0.125, right=0.9, top=0.9, bottom=0.1) >>> fig.tight_layout() Fit subplot(s) in to the figure area Axis Spines >>> ax1.spines['top'].set_visible(False) Make the top axis line for a plot invisible >>> ax1.spines['bottom'].set_position(('outward',10))Move the bottom axis line outward Figure Axes >>> data = 2 * np.random.random((10, 10)) >>> data2 = 3 * np.random.random((10, 10)) >>> Y, X = np.mgrid[-3:3:100j, -3:3:100j] >>> U = -1 - X**2 + Y >>> V = 1 + X - Y**2 >>> from matplotlib.cbook import get_sample_data >>> img = np.load(get_sample_data('axes_grid/bivariate_normal.npy')) >>> lines = ax.plot(x,y) Draw points with lines or markers connecting them >>> ax.scatter(x,y) Draw unconnected points, scaled or colored >>> axes[0,0].bar([1,2,3],[3,4,5]) Plot vertical rectangles (constant width) >>> axes[1,0].barh([0.5,1,2.5],[0,1,2]) Plot horiontal rectangles (constant height) >>> axes[1,1].axhline(0.45) Draw a horizontal line across axes >>> axes[0,1].axvline(0.65) Draw a vertical line across axes >>> ax.fill(x,y,color='blue') Draw filled polygons >>> ax.fill_between(x,y,color='yellow') Fill between y-values and 0 Plotting Routines3 1D Data >>> fig, ax = plt.subplots() >>> im = ax.imshow(img, Colormapped or RGB arrays cmap='gist_earth', interpolation='nearest', vmin=-2, vmax=2) 2D Data or Images Vector Fields >>> axes[0,1].arrow(0,0,0.5,0.5) Add an arrow to the axes >>> axes[1,1].quiver(y,z) Plot a 2D field of arrows >>> axes[0,1].streamplot(X,Y,U,V) Plot 2D vector fields Data Distributions >>> ax1.hist(y) Plot a histogram >>> ax3.boxplot(y) Make a box and whisker plot >>> ax3.violinplot(z) Make a violin plot >>> axes2[0].pcolor(data2) Pseudocolor plot of 2D array >>> axes2[0].pcolormesh(data) Pseudocolor plot of 2D array >>> CS = plt.contour(Y,X,U) Plot contours >>> axes2[2].contourf(data1) Plot filled contours >>> axes2[2]= ax.clabel(CS) Label a contour plot Figure Axes/Subplot Y-axis X-axis 1D Data 2D Data or Images >>> plt.plot(x, x, x, x**2, x, x**3) >>> ax.plot(x, y, alpha = 0.4) >>> ax.plot(x, y, c='k') >>> fig.colorbar(im, orientation='horizontal') >>> im = ax.imshow(img, cmap='seismic') >>> fig, ax = plt.subplots() >>> ax.scatter(x,y,marker=".") >>> ax.plot(x,y,marker="o") >>> plt.title(r'$sigma_i=15$', fontsize=20) >>> ax.text(1, -2.1, 'Example Graph', style='italic') >>> ax.annotate("Sine", xy=(8, 0), xycoords='data', xytext=(10.5, 0), textcoords='data', arrowprops=dict(arrowstyle="->", connectionstyle="arc3"),) >>> plt.plot(x,y,linewidth=4.0) >>> plt.plot(x,y,ls='solid') >>> plt.plot(x,y,ls='--') >>> plt.plot(x,y,'--',x**2,y**2,'-.') >>> plt.setp(lines,color='r',linewidth=4.0) >>> import matplotlib.pyplot as plt Close & Clear >>> plt.cla() Clear an axis >>> plt.clf() Clear the entire figure >>> plt.close() Close a window