LOG DATA ANALYSIS PLATFORM May, 2015
Agenda 1) User-Group Introduction 2) Problematic 3) Log Data Analysis System Overview 4) Task Analysis 5) Solution Architecture 6) Trade-off Analysis 7) Automation 8) Performance Testing 9) Outcome & Plans
PROBLEMATIC
Demo Lab: Why we’ve started this project? 1) Increase Internal Experience 2) Create Reference Solution w/o NDA Limitations 3) Get Playground for Tests 4) Provide Demo Environment for Customers (using their data) 5) Decrease time to Market (by introducing automation)
LOG DATA ANALYSIS PLATFORM : OVERVIEW
Log Data Analysis Platform Details Key Facts: • ~270-300 Web Servers • Log Types: HTTPD Access logs, Error logs, Application Server Servlet, OS Service Logs • ~500K events per minute • 150GB of data per day Technologies: • Flume • Hadoop/HDFS, MapReduce • Hive, Impala • Oozie • Elasticsearch, Kibana 3 • Tableau Analytics platform • Puppet + Vagrant
Log Data Examples Access log: 127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] "GET /apache_pb.gif HTTP/1.0" 200 2326 Error log: [Sun Mar 7 20:58:27 2004] [info] [client 64.242.88.10] (104)Connection reset by peer: client stopped connection before send body completed [Sun Mar 7 21:16:17 2004] [error] [client 24.70.56.49] File does not exist: /home/httpd/twiki/view/Main/WebHome Vmstat procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu------ r b swpd free buff cache si so bi bo in cs us sy id wa st 0 0 305416 260688 29160 2356920 2 2 4 1 0 0 6 1 92 2 0 iostat Linux 2.6.32-100.28.5.el6.x86_64 (dev-db) 07/09/2011 avg-cpu: %user %nice %system %iowait %steal %idle 5.68 0.00 0.52 2.03 0.00 91.76
TASK ANALYSIS
Architecture Drivers: Use Cases
Architecture Drivers: Quality Attributes (1/3)
Architecture Drivers: Quality Attributes (2/3)
Architecture Drivers: Quality Attributes (3/3)
Architecture Drivers: Limitations
Demo Lab: Marketecture
SOLUTION ARCHITECTURE
Solution Architecture Batch Layer Serving Layer Speed Layer Raw Data Storage Data Strea m Real-time Views Static Views Precomputing Precomputing Ad-hoc Batch Views Static Batch Views Corporate BI Tool Legend: Layer boundary Data flow (with direction indicated) Query flow Apache HTTP Servers Raw Data Storage Pre-computing Batch Views Real-Time Views Dashboard/ Search Data Stream Real-Time Processing and Aggregations BI Tool  Avro as a Raw Data Storage file format  Parquet as a Batch Views file format  Star schema as a Batch Views data model
Architecture: Flume Topology
Batch ETL
TRADE-OFF ANALYSIS
Distribution Selection
Hive Stinger vs Impala Compression Ratio Access Speed
AUTOMATION
Automation (saves time and money) 80% 20% Development and Debugging F&P Testing, Demo Local Development Cloud Development
vagrant up
Automation Process Phase Tool Notes VM Provisioning Vagrant — Supports: VirtualBox, VMWare ESX, Amazon AWS VM Bootstraping Puppet — Installs Cloudera Manager, Cloudera Distribution Hadoop, ElasticSearch+Kibana, Flume, Microstrategy, Log Generator. — Creates Cluster using Cloudera Manager API. Configure ETL and BI Puppet — Configures Flume, Oozie, ElasticSearch, Impala, Hive, Microstrategy Dashboards Integration Tests Puppet — Generates Workload and ensures data go through. — Checks Logs for errors. — Calculates timing/throughput.
PERFORMANCE TESTING
Log Generator 1 Thread can generate: 4200 events / second (File source) 5500 events / second (TCP source)
Accurate Sizing 100k/min 50k/min 20k/min 200k /min Calculator!
OUTCOME & PLANS
Outcome 1) Demo lab, playground, testing platform (in 1 hour) 2) Sizing Calculator 3) Help to get 3 new customers (one is really, really huge) 4) Strategic Partnership with Cloudera 5) Tons of experience and fun  Plans 1) Add support for other Hadoop Distributions (Hortonworks, MapR) 2) Make Project Open-Source
Thank You! 31 SoftServe US Office One Congress Plaza, 111 Congress Avenue, Suite 2700 Austin, TX 78701 Tel: 512.516.8880 Contacts Valentyn Kropov vkrop@softserveinc.com Tel: 866.687.3588 x4341

Log Data Analysis Platform

  • 1.
    LOG DATA ANALYSISPLATFORM May, 2015
  • 2.
    Agenda 1) User-Group Introduction 2)Problematic 3) Log Data Analysis System Overview 4) Task Analysis 5) Solution Architecture 6) Trade-off Analysis 7) Automation 8) Performance Testing 9) Outcome & Plans
  • 3.
  • 4.
    Demo Lab: Whywe’ve started this project? 1) Increase Internal Experience 2) Create Reference Solution w/o NDA Limitations 3) Get Playground for Tests 4) Provide Demo Environment for Customers (using their data) 5) Decrease time to Market (by introducing automation)
  • 5.
    LOG DATA ANALYSISPLATFORM : OVERVIEW
  • 6.
    Log Data AnalysisPlatform Details Key Facts: • ~270-300 Web Servers • Log Types: HTTPD Access logs, Error logs, Application Server Servlet, OS Service Logs • ~500K events per minute • 150GB of data per day Technologies: • Flume • Hadoop/HDFS, MapReduce • Hive, Impala • Oozie • Elasticsearch, Kibana 3 • Tableau Analytics platform • Puppet + Vagrant
  • 7.
    Log Data Examples Accesslog: 127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] "GET /apache_pb.gif HTTP/1.0" 200 2326 Error log: [Sun Mar 7 20:58:27 2004] [info] [client 64.242.88.10] (104)Connection reset by peer: client stopped connection before send body completed [Sun Mar 7 21:16:17 2004] [error] [client 24.70.56.49] File does not exist: /home/httpd/twiki/view/Main/WebHome Vmstat procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu------ r b swpd free buff cache si so bi bo in cs us sy id wa st 0 0 305416 260688 29160 2356920 2 2 4 1 0 0 6 1 92 2 0 iostat Linux 2.6.32-100.28.5.el6.x86_64 (dev-db) 07/09/2011 avg-cpu: %user %nice %system %iowait %steal %idle 5.68 0.00 0.52 2.03 0.00 91.76
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
    Solution Architecture Batch LayerServing Layer Speed Layer Raw Data Storage Data Strea m Real-time Views Static Views Precomputing Precomputing Ad-hoc Batch Views Static Batch Views Corporate BI Tool Legend: Layer boundary Data flow (with direction indicated) Query flow Apache HTTP Servers Raw Data Storage Pre-computing Batch Views Real-Time Views Dashboard/ Search Data Stream Real-Time Processing and Aggregations BI Tool  Avro as a Raw Data Storage file format  Parquet as a Batch Views file format  Star schema as a Batch Views data model
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
    Hive Stinger vsImpala Compression Ratio Access Speed
  • 22.
  • 23.
    Automation (saves timeand money) 80% 20% Development and Debugging F&P Testing, Demo Local Development Cloud Development
  • 24.
  • 25.
    Automation Process Phase ToolNotes VM Provisioning Vagrant — Supports: VirtualBox, VMWare ESX, Amazon AWS VM Bootstraping Puppet — Installs Cloudera Manager, Cloudera Distribution Hadoop, ElasticSearch+Kibana, Flume, Microstrategy, Log Generator. — Creates Cluster using Cloudera Manager API. Configure ETL and BI Puppet — Configures Flume, Oozie, ElasticSearch, Impala, Hive, Microstrategy Dashboards Integration Tests Puppet — Generates Workload and ensures data go through. — Checks Logs for errors. — Calculates timing/throughput.
  • 26.
  • 27.
    Log Generator 1 Threadcan generate: 4200 events / second (File source) 5500 events / second (TCP source)
  • 28.
  • 29.
  • 30.
    Outcome 1) Demo lab,playground, testing platform (in 1 hour) 2) Sizing Calculator 3) Help to get 3 new customers (one is really, really huge) 4) Strategic Partnership with Cloudera 5) Tons of experience and fun  Plans 1) Add support for other Hadoop Distributions (Hortonworks, MapR) 2) Make Project Open-Source
  • 31.
    Thank You! 31 SoftServe USOffice One Congress Plaza, 111 Congress Avenue, Suite 2700 Austin, TX 78701 Tel: 512.516.8880 Contacts Valentyn Kropov vkrop@softserveinc.com Tel: 866.687.3588 x4341