This document presents a review of using recurrent neural networks for network intrusion detection. It begins with an introduction to intrusion detection systems and the types of attacks they aim to detect. It then discusses previous research on machine learning approaches for intrusion detection, including the use of autoencoders, support vector machines, and other classifiers. The proposed approach uses a recurrent neural network for feature selection and classification of network data. The framework involves data collection, preprocessing including feature selection, training the recurrent neural network classifier, and then using the trained model to detect attacks in new data. Experimental results on benchmark intrusion detection datasets are presented and compared to other machine learning methods.