How to understand and analyze Apache Hive query execution plan for performance debugging © Hortonworks Inc. 2011 – 2015. All Rights Reserved Pengcheng Xiong and Ashutosh Chauhan Hortonworks Inc., Apache Hive Community {pxiong,ashutosh}@hortonworks.com
Page2 © Hortonworks Inc. 2011 – 2014. All Rights Reserved Goals: • WHY old style Hive explain plan is hard to read • Compare the old style explain with Postgres over a body of 500+ realistic SQL queries. • WHAT is new style Hive explain plan • Show orchestration of the tasks and operator trees, join sequences and algorithms, operator execution costs • HOW to performance debug a real query by analyzing the new Hive explain plan • Identify the potential improvement by changing join sequence, join algorithm and etc • Show the real improvement by running the query in real cluster • Integration/interaction with other system/tools • Future work
Page3 © Hortonworks Inc. 2011 – 2014. All Rights Reserved WHY old style Hive explain plan is hard to read • M**** company’s schema and queries. • Comparison of explain plans between Hive and Postgres for the 528 queries they can both execute. • Hive: “explain”, Postgres: “explain verbose” Hive “old style”, 233.5 postgres, 53.8 Hive “old style”, 1289 postgres, 328.6 Average Lines Per Explain Plan Average Words Per Explain Plan N = 528 queries
Page4 © Hortonworks Inc. 2011 – 2014. All Rights Reserved We can see that Hive old style explain is quite verbose, is it necessary? select a11.PBTNAME PBTNAME from PMT_INVENTORY a11 join LU_MONTH a12 on (a11.QUARTER_ID = a12.QUARTER_ID) where a12.MONTH_ID in (200607, 200606) group by a11.PBTNAME;
Page5 © Hortonworks Inc. 2011 – 2014. All Rights Reserved High level plan comparison: Postgres QUERY PLAN --------------------------------------------------------------------------------- Group (cost=3.83..3.84 rows=2 width=18) Output: a11.pbtname Group Key: a11.pbtname -> Sort (cost=3.83..3.84 rows=2 width=18) Output: a11.pbtname Sort Key: a11.pbtname -> Hash Join (cost=2.62..3.83 rows=2 width=18) Output: a11.pbtname Hash Cond: (a11.quarter_id = a12.quarter_id) -> Seq Scan on public.pmt_inventory a11 (cost=0.00..1.12 rows=12 width=22) Output: a11.quarter_id, a11.pbtname -> Hash (cost=2.60..2.60 rows=2 width=4) Output: a12.quarter_id -> Seq Scan on public.lu_month a12 (cost=0.00..2.60 rows=2 width=4) Output: a12.quarter_id Filter: (a12.month_id = ANY ('{200607,200606}'::integer[])) 16 lines
Page6 © Hortonworks Inc. 2011 – 2014. All Rights Reserved High level plan comparison: Hive STAGE DEPENDENCIES: Stage-1 is a root stage Stage-0 depends on stages: Stage-1 STAGE PLANS: Stage: Stage-1 Tez Edges: Map 2 <- Map 1 (BROADCAST_EDGE) Reducer 3 <- Map 2 (SIMPLE_EDGE) DagName: carter_20151114133018_2f2f0101-d14d-4688-bbb1-db67055016c3:946 Vertices: Map 1 Map Operator Tree: TableScan alias: a11 filterExpr: quarter_id is not null (type: boolean) Statistics: Num rows: 12 Data size: 1260 Basic stats: COMPLETE Column stats: NONE Filter Operator predicate: quarter_id is not null (type: boolean) Statistics: Num rows: 6 Data size: 630 Basic stats: COMPLETE Column stats: NONE Reduce Output Operator key expressions: quarter_id (type: int) sort order: + Map-reduce partition columns: quarter_id (type: int) Statistics: Num rows: 6 Data size: 630 Basic stats: COMPLETE Column stats: NONE value expressions: pbtname (type: string) Execution mode: vectorized Map 2 Map Operator Tree: TableScan alias: a12 filterExpr: (quarter_id is not null and (month_id) IN (200607, 200606)) (type: boolean) Statistics: Num rows: 48 Data size: 46752 Basic stats: COMPLETE Column stats: NONE Filter Operator predicate: (quarter_id is not null and (month_id) IN (200607, 200606)) (type: boolean) Statistics: Num rows: 12 Data size: 11688 Basic stats: COMPLETE Column stats: NONE Map Join Operator condition map: Inner Join 0 to 1 keys: 0 quarter_id (type: int) 1 quarter_id (type: int) outputColumnNames: _col1 input vertices: 0 Map 1 Statistics: Num rows: 13 Data size: 12856 Basic stats: COMPLETE Column stats: NONE HybridGraceHashJoin: true Group By Operator keys: _col1 (type: string) mode: hash outputColumnNames: _col0 Statistics: Num rows: 13 Data size: 12856 Basic stats: COMPLETE Column stats: NONE Reduce Output Operator key expressions: _col0 (type: string) sort order: + Map-reduce partition columns: _col0 (type: string) Statistics: Num rows: 13 Data size: 12856 Basic stats: COMPLETE Column stats: NONE Execution mode: vectorized Reducer 3 Reduce Operator Tree: Group By Operator keys: KEY._col0 (type: string) mode: mergepartial outputColumnNames: _col0 Statistics: Num rows: 6 Data size: 5933 Basic stats: COMPLETE Column stats: NONE File Output Operator compressed: false Statistics: Num rows: 6 Data size: 5933 Basic stats: COMPLETE Column stats: NONE table: input format: org.apache.hadoop.mapred.TextInputFormat output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe Stage: Stage-0 Fetch Operator limit: -1 Processor Tree: ListSink Too verbose, need a magnifier! 80+ lines
Page7 © Hortonworks Inc. 2011 – 2014. All Rights Reserved Map 2 Operator Map 2 Map Operator Tree: TableScan alias: a12 filterExpr: (quarter_id is not null and (month_id) IN (200607, 200606)) (type: boolean) Statistics: Num rows: 48 Data size: 46752 Basic stats: COMPLETE Column stats: NONE Filter Operator predicate: (quarter_id is not null and (month_id) IN (200607, 200606)) (type: boolean) Statistics: Num rows: 12 Data size: 11688 Basic stats: COMPLETE Column stats: NONE Map Join Operator condition map: Inner Join 0 to 1 keys: 0 quarter_id (type: int) 1 quarter_id (type: int) outputColumnNames: _col1 input vertices: 0 Map 1 Statistics: Num rows: 13 Data size: 12856 Basic stats: COMPLETE Column stats: NONE HybridGraceHashJoin: true Group By Operator keys: _col1 (type: string) mode: hash outputColumnNames: _col0 Statistics: Num rows: 13 Data size: 12856 Basic stats: COMPLETE Column stats: NONE Reduce Output Operator key expressions: _col0 (type: string) sort order: + Map-reduce partition columns: _col0 (type: string) Statistics: Num rows: 13 Data size: 12856 Basic stats: COMPLETE Column stats: NONE Execution mode: vectorized Data flows from top to bottom Each operator has 0 or 1 child
Page8 © Hortonworks Inc. 2011 – 2014. All Rights Reserved Map 2 Operator Map 2 Map Operator Tree: TableScan alias: a12 filterExpr: (quarter_id is not null and (month_id) IN (200607, 200606)) (type: boolean) Statistics: Num rows: 48 Data size: 46752 Basic stats: COMPLETE Column stats: NONE Filter Operator predicate: (quarter_id is not null and (month_id) IN (200607, 200606)) (type: boolean) Statistics: Num rows: 12 Data size: 11688 Basic stats: COMPLETE Column stats: NONE Map Join Operator condition map: Inner Join 0 to 1 keys: 0 quarter_id (type: int) 1 quarter_id (type: int) outputColumnNames: _col1 input vertices: 0 Map 1 Statistics: Num rows: 13 Data size: 12856 Basic stats: COMPLETE Column stats: NONE HybridGraceHashJoin: true Group By Operator keys: _col1 (type: string) mode: hash outputColumnNames: _col0 Statistics: Num rows: 13 Data size: 12856 Basic stats: COMPLETE Column stats: NONE Reduce Output Operator key expressions: _col0 (type: string) sort order: + Map-reduce partition columns: _col0 (type: string) Statistics: Num rows: 13 Data size: 12856 Basic stats: COMPLETE Column stats: NONE Execution mode: vectorized Must scroll to another part of the plan to see what this is
Page9 © Hortonworks Inc. 2011 – 2014. All Rights Reserved Map 1 Operator Map 1 Map Operator Tree: TableScan alias: a11 filterExpr: quarter_id is not null (type: boolean) Statistics: Num rows: 12 Data size: 1260 Basic stats: COMPLETE Column stats: NONE Filter Operator predicate: quarter_id is not null (type: boolean) Statistics: Num rows: 6 Data size: 630 Basic stats: COMPLETE Column stats: NONE Reduce Output Operator key expressions: quarter_id (type: int) sort order: + Map-reduce partition columns: quarter_id (type: int) Statistics: Num rows: 6 Data size: 630 Basic stats: COMPLETE Column stats: NONE value expressions: pbtname (type: string) Execution mode: vectorized Actual table name (PMT_INVENTORY) not mentioned anywhere, only the alias
Page10 © Hortonworks Inc. 2011 – 2014. All Rights Reserved Map 1 Operator Map 1 Map Operator Tree: TableScan alias: a11 filterExpr: quarter_id is not null (type: boolean) Statistics: Num rows: 12 Data size: 1260 Basic stats: COMPLETE Column stats: NONE Filter Operator predicate: quarter_id is not null (type: boolean) Statistics: Num rows: 6 Data size: 630 Basic stats: COMPLETE Column stats: NONE Reduce Output Operator key expressions: quarter_id (type: int) sort order: + Map-reduce partition columns: quarter_id (type: int) Statistics: Num rows: 6 Data size: 630 Basic stats: COMPLETE Column stats: NONE value expressions: pbtname (type: string) Execution mode: vectorized How much of this information is really necessary to SQL users?
Page11 © Hortonworks Inc. 2011 – 2014. All Rights Reserved Back to Postgres QUERY PLAN --------------------------------------------------------------------------------- Group (cost=3.83..3.84 rows=2 width=18) Output: a11.pbtname Group Key: a11.pbtname -> Sort (cost=3.83..3.84 rows=2 width=18) Output: a11.pbtname Sort Key: a11.pbtname -> Hash Join (cost=2.62..3.83 rows=2 width=18) Output: a11.pbtname Hash Cond: (a11.quarter_id = a12.quarter_id) -> Seq Scan on public.pmt_inventory a11 (cost=0.00..1.12 rows=12 width=22) Output: a11.quarter_id, a11.pbtname -> Hash (cost=2.60..2.60 rows=2 width=4) Output: a12.quarter_id -> Seq Scan on public.lu_month a12 (cost=0.00..2.60 rows=2 width=4) Output: a12.quarter_id Filter: (a12.month_id = ANY ('{200607,200606}'::integer[])) Data flows bottom to top
Page12 © Hortonworks Inc. 2011 – 2014. All Rights Reserved Back to Postgres QUERY PLAN --------------------------------------------------------------------------------- Group (cost=3.83..3.84 rows=2 width=18) Output: a11.pbtname Group Key: a11.pbtname -> Sort (cost=3.83..3.84 rows=2 width=18) Output: a11.pbtname Sort Key: a11.pbtname -> Hash Join (cost=2.62..3.83 rows=2 width=18) Output: a11.pbtname Hash Cond: (a11.quarter_id = a12.quarter_id) -> Seq Scan on public.pmt_inventory a11 (cost=0.00..1.12 rows=12 width=22) Output: a11.quarter_id, a11.pbtname -> Hash (cost=2.60..2.60 rows=2 width=4) Output: a12.quarter_id -> Seq Scan on public.lu_month a12 (cost=0.00..2.60 rows=2 width=4) Output: a12.quarter_id Filter: (a12.month_id = ANY ('{200607,200606}'::integer[])) Operators have multiple children when it makes sense
Page13 © Hortonworks Inc. 2011 – 2014. All Rights Reserved Back to Postgres QUERY PLAN --------------------------------------------------------------------------------- Group (cost=3.83..3.84 rows=2 width=18) Output: a11.pbtname Group Key: a11.pbtname -> Sort (cost=3.83..3.84 rows=2 width=18) Output: a11.pbtname Sort Key: a11.pbtname -> Hash Join (cost=2.62..3.83 rows=2 width=18) Output: a11.pbtname Hash Cond: (a11.quarter_id = a12.quarter_id) -> Seq Scan on public.pmt_inventory a11 (cost=0.00..1.12 rows=12 width=22) Output: a11.quarter_id, a11.pbtname -> Hash (cost=2.60..2.60 rows=2 width=4) Output: a12.quarter_id -> Seq Scan on public.lu_month a12 (cost=0.00..2.60 rows=2 width=4) Output: a12.quarter_id Filter: (a12.month_id = ANY ('{200607,200606}'::integer[])) Join is done using a scan of pmt_inventory and a hash following a scan of lu_month. All this info is available without referring to a stage plan. IOW you don’t have to jump around in the plan.
Page14 © Hortonworks Inc. 2011 – 2014. All Rights Reserved Back to Postgres QUERY PLAN --------------------------------------------------------------------------------- Group (cost=3.83..3.84 rows=2 width=18) Output: a11.pbtname Group Key: a11.pbtname -> Sort (cost=3.83..3.84 rows=2 width=18) Output: a11.pbtname Sort Key: a11.pbtname -> Hash Join (cost=2.62..3.83 rows=2 width=18) Output: a11.pbtname Hash Cond: (a11.quarter_id = a12.quarter_id) -> Seq Scan on public.pmt_inventory a11 (cost=0.00..1.12 rows=12 width=22) Output: a11.quarter_id, a11.pbtname -> Hash (cost=2.60..2.60 rows=2 width=4) Output: a12.quarter_id -> Seq Scan on public.lu_month a12 (cost=0.00..2.60 rows=2 width=4) Output: a12.quarter_id Filter: (a12.month_id = ANY ('{200607,200606}'::integer[])) Actual schema / table names visible
Page15 © Hortonworks Inc. 2011 – 2014. All Rights Reserved Back to Postgres QUERY PLAN --------------------------------------------------------------------------------- Group (cost=3.83..3.84 rows=2 width=18) Output: a11.pbtname Group Key: a11.pbtname -> Sort (cost=3.83..3.84 rows=2 width=18) Output: a11.pbtname Sort Key: a11.pbtname -> Hash Join (cost=2.62..3.83 rows=2 width=18) Output: a11.pbtname Hash Cond: (a11.quarter_id = a12.quarter_id) -> Seq Scan on public.pmt_inventory a11 (cost=0.00..1.12 rows=12 width=22) Output: a11.quarter_id, a11.pbtname -> Hash (cost=2.60..2.60 rows=2 width=4) Output: a12.quarter_id -> Seq Scan on public.lu_month a12 (cost=0.00..2.60 rows=2 width=4) Output: a12.quarter_id Filter: (a12.month_id = ANY ('{200607,200606}'::integer[])) Cost mentioned once per operator Cost monotonically increases as you go up
Page16 © Hortonworks Inc. 2011 – 2014. All Rights Reserved WHAT is new style Hive explain plan (HIVE-9780) • Set hive.explain.user=true; (by default). Use Tez, LLAP, etc Stage-1 Reducer 3 File Output Operator [FS_14] Group By Operator [GBY_12] (rows=8 width=101) Output:["_col0"],keys:KEY._col0 <-Map 2 [SIMPLE_EDGE] SHUFFLE [RS_11] PartitionCols:_col0 Group By Operator [GBY_10] (rows=8 width=101) Output:["_col0"],keys:_col1 Map Join Operator [MAPJOIN_19] (rows=33 width=101) Conds:RS_6._col0=SEL_5._col1(Inner),HybridGraceHashJoin:true,Output:["_col1"] <-Map 1 [BROADCAST_EDGE] BROADCAST [RS_6] PartitionCols:_col0 Select Operator [SEL_2] (rows=12 width=105) Output:["_col0","_col1"] Filter Operator [FIL_17] (rows=12 width=105) predicate:quarter_id is not null TableScan [TS_0] (rows=12 width=105) m****@pmt_inventory,a11,Tbl:COMPLETE,Col:COMPLETE,Output:["quarter_id","pbtname"] <-Select Operator [SEL_5] (rows=48 width=8) Output:["_col1"] Filter Operator [FIL_18] (rows=48 width=8) predicate:((month_id) IN (200607, 200606) and quarter_id is not null) TableScan [TS_3] (rows=48 width=8) m****@lu_month,a12,Tbl:COMPLETE,Col:COMPLETE,Output:["month_id","quarter_id"] Immediate Notes: 1. Much smaller 2. Can be read in order
Page17 © Hortonworks Inc. 2011 – 2014. All Rights Reserved WHAT is new style Hive explain plan (HIVE-9780) Stage-1 Reducer 3 File Output Operator [FS_14] Group By Operator [GBY_12] (rows=8 width=101) Output:["_col0"],keys:KEY._col0 <-Map 2 [SIMPLE_EDGE] SHUFFLE [RS_11] PartitionCols:_col0 Group By Operator [GBY_10] (rows=8 width=101) Output:["_col0"],keys:_col1 Map Join Operator [MAPJOIN_19] (rows=33 width=101) Conds:RS_6._col0=SEL_5._col1(Inner),HybridGraceHashJoin:true,Output:["_col1"] <-Map 1 [BROADCAST_EDGE] BROADCAST [RS_6] PartitionCols:_col0 Select Operator [SEL_2] (rows=12 width=105) Output:["_col0","_col1"] Filter Operator [FIL_17] (rows=12 width=105) predicate:quarter_id is not null TableScan [TS_0] (rows=12 width=105) m****@pmt_inventory,a11,Tbl:COMPLETE,Col:COMPLETE,Output:["quarter_id","pbtname"] <-Select Operator [SEL_5] (rows=48 width=8) Output:["_col1"] Filter Operator [FIL_18] (rows=48 width=8) predicate:((month_id) IN (200607, 200606) and quarter_id is not null) TableScan [TS_3] (rows=48 width=8) m****@lu_month,a12,Tbl:COMPLETE,Col:COMPLETE,Output:["month_id","quarter_id"] Data flows bottom to top
Page18 © Hortonworks Inc. 2011 – 2014. All Rights Reserved WHAT is new style Hive explain plan (HIVE-9780) Stage-1 Reducer 3 File Output Operator [FS_14] Group By Operator [GBY_12] (rows=8 width=101) Output:["_col0"],keys:KEY._col0 <-Map 2 [SIMPLE_EDGE] SHUFFLE [RS_11] PartitionCols:_col0 Group By Operator [GBY_10] (rows=8 width=101) Output:["_col0"],keys:_col1 Map Join Operator [MAPJOIN_19] (rows=33 width=101) Conds:RS_6._col0=SEL_5._col1(Inner),HybridGraceHashJoin:true,Output:["_col1"] <-Map 1 [BROADCAST_EDGE] BROADCAST [RS_6] PartitionCols:_col0 Select Operator [SEL_2] (rows=12 width=105) Output:["_col0","_col1"] Filter Operator [FIL_17] (rows=12 width=105) predicate:quarter_id is not null TableScan [TS_0] (rows=12 width=105) m****@pmt_inventory,a11,Tbl:COMPLETE,Col:COMPLETE,Output:["quarter_id","pbtname"] <-Select Operator [SEL_5] (rows=48 width=8) Output:["_col1"] Filter Operator [FIL_18] (rows=48 width=8) predicate:((month_id) IN (200607, 200606) and quarter_id is not null) TableScan [TS_3] (rows=48 width=8) m****@lu_month,a12,Tbl:COMPLETE,Col:COMPLETE,Output:["month_id","quarter_id"] Operators have multiple children when it makes sense
Page19 © Hortonworks Inc. 2011 – 2014. All Rights Reserved WHAT is new style Hive explain plan (HIVE-9780) Stage-1 Reducer 3 File Output Operator [FS_14] Group By Operator [GBY_12] (rows=8 width=101) Output:["_col0"],keys:KEY._col0 <-Map 2 [SIMPLE_EDGE] SHUFFLE [RS_11] PartitionCols:_col0 Group By Operator [GBY_10] (rows=8 width=101) Output:["_col0"],keys:_col1 Map Join Operator [MAPJOIN_19] (rows=33 width=101) Conds:RS_6._col0=SEL_5._col1(Inner),HybridGraceHashJoin:true,Output:["_col1"] <-Map 1 [BROADCAST_EDGE] BROADCAST [RS_6] PartitionCols:_col0 Select Operator [SEL_2] (rows=12 width=105) Output:["_col0","_col1"] Filter Operator [FIL_17] (rows=12 width=105) predicate:quarter_id is not null TableScan [TS_0] (rows=12 width=105) m****@pmt_inventory,a11,Tbl:COMPLETE,Col:COMPLETE,Output:["quarter_id","pbtname"] <-Select Operator [SEL_5] (rows=48 width=8) Output:["_col1"] Filter Operator [FIL_18] (rows=48 width=8) predicate:((month_id) IN (200607, 200606) and quarter_id is not null) TableScan [TS_3] (rows=48 width=8) m****@lu_month,a12,Tbl:COMPLETE,Col:COMPLETE,Output:["month_id","quarter_id"] Join’s information is clear pmt_inventory is broadcasted to lu_month and a MapJoin is done
Page20 © Hortonworks Inc. 2011 – 2014. All Rights Reserved WHAT is new style Hive explain plan (HIVE-9780) Stage-1 Reducer 3 File Output Operator [FS_14] Group By Operator [GBY_12] (rows=8 width=101) Output:["_col0"],keys:KEY._col0 <-Map 2 [SIMPLE_EDGE] SHUFFLE [RS_11] PartitionCols:_col0 Group By Operator [GBY_10] (rows=8 width=101) Output:["_col0"],keys:_col1 Map Join Operator [MAPJOIN_19] (rows=33 width=101) Conds:RS_6._col0=SEL_5._col1(Inner),HybridGraceHashJoin:true,Output:["_col1"] <-Map 1 [BROADCAST_EDGE] BROADCAST [RS_6] PartitionCols:_col0 Select Operator [SEL_2] (rows=12 width=105) Output:["_col0","_col1"] Filter Operator [FIL_17] (rows=12 width=105) predicate:quarter_id is not null TableScan [TS_0] (rows=12 width=105) m****@pmt_inventory,a11,Tbl:COMPLETE,Col:COMPLETE,Output:["quarter_id","pbtname"] <-Select Operator [SEL_5] (rows=48 width=8) Output:["_col1"] Filter Operator [FIL_18] (rows=48 width=8) predicate:((month_id) IN (200607, 200606) and quarter_id is not null) TableScan [TS_3] (rows=48 width=8) m****@lu_month,a12,Tbl:COMPLETE,Col:COMPLETE,Output:["month_id","quarter_id"] Cost mentioned once per operator
Page21 © Hortonworks Inc. 2011 – 2014. All Rights Reserved HOW to performance debug a real query (TPC-DS Q3, 1TB) select dt.d_year, item.i_brand_id brand_id, item.i_brand brand, sum(ss_ext_sales_price) sum_agg from date_dim dt, store_sales, item where dt.d_date_sk = store_sales.ss_sold_date_sk and store_sales.ss_item_sk = item.i_item_sk and item.i_manufact_id = 436 and dt.d_moy = 12 group by dt.d_year , item.i_brand , item.i_brand_id order by dt.d_year , sum_agg desc , brand_id limit 10 partitioned by ss_sold_date_sk
Page22 © Hortonworks Inc. 2011 – 2014. All Rights Reserved <-Reducer 3 [SIMPLE_EDGE] SHUFFLE [RS_15] PartitionCols:_col0, _col1, _col2 Group By Operator [GBY_14] (rows=1 width=116) Output:["_col0","_col1","_col2","_col3"],aggregations:["sum(_col45)"],keys:_col6, _col65, _col64 Select Operator [SEL_13] (rows=76515 width=128) Output:["_col6","_col65","_col64","_col45"] Filter Operator [FIL_23] (rows=76515 width=128) predicate:((_col0 = _col53) and (_col32 = _col57)) Merge Join Operator [MERGEJOIN_28] (rows=306061 width=128) Conds:RS_8._col32=RS_34.i_item_sk(Inner),Output:["_col0","_col6","_col32","_col45","_col53","_col57","_col64","_col65"] <-Map 7 [SIMPLE_EDGE] vectorized SHUFFLE [RS_34] PartitionCols:i_item_sk Filter Operator [FIL_33] (rows=434 width=111) predicate:(i_item_sk is not null and (i_manufact_id = 436)) TableScan [TS_2] (rows=300000 width=111) tpcds_bin_partitioned_orc_1000@item,item,Tbl:COMPLETE,Col:COMPLETE,Output:["i_item_sk","i_brand_id","i_brand","i_manufact_id"] <-Reducer 2 [SIMPLE_EDGE] SHUFFLE [RS_8] PartitionCols:_col32 Merge Join Operator [MERGEJOIN_27] (rows=211562452 width=20) Conds:RS_30.d_date_sk=RS_32.ss_sold_date_sk(Inner),Output:["_col0","_col6","_col32","_col45","_col53"] <-Map 1 [SIMPLE_EDGE] vectorized SHUFFLE [RS_30] PartitionCols:d_date_sk Filter Operator [FIL_29] (rows=5619 width=12) predicate:(d_date_sk is not null and (d_moy = 12)) TableScan [TS_0] (rows=73049 width=12) tpcds_bin_partitioned_orc_1000@date_dim,dt,Tbl:COMPLETE,Col:COMPLETE,Output:["d_date_sk","d_year","d_moy"] <-Map 6 [SIMPLE_EDGE] vectorized SHUFFLE [RS_32] PartitionCols:ss_sold_date_sk Filter Operator [FIL_31] (rows=2750387156 width=11) predicate:ss_item_sk is not null TableScan [TS_1] (rows=2750387156 width=11) tpcds_bin_partitioned_orc_1000@store_sales,store_sales,Tbl:COMPLETE,Col:COMPLETE,Output:["ss_item_sk","ss_ext_sales_price"] Original plan runs 163.33s. Sounds like column pruning and predicate push down are working fine. However, the join sequence store_sales✖date_dim✖item is not good enough. A better one is store_sales✖item✖date_dim Table Cardinality Cardinality after filter Selectivity date_dim 73K 5619 7.6% item 300K 434 0.14%
Page23 © Hortonworks Inc. 2011 – 2014. All Rights Reserved <-Reducer 3 [SIMPLE_EDGE] SHUFFLE [RS_17] PartitionCols:_col0, _col1, _col2 Group By Operator [GBY_16] (rows=9 width=116) Output:["_col0","_col1","_col2","_col3"],aggregations:["sum(_col1)"],keys:_col8, _col4, _col5 Select Operator [SEL_15] (rows=306061 width=112) Output:["_col8","_col4","_col5","_col1"] Merge Join Operator [MERGEJOIN_29] (rows=306061 width=112) Conds:RS_12._col2=RS_38._col0(Inner),Output:["_col1","_col4","_col5","_col8"] <-Map 7 [SIMPLE_EDGE] vectorized SHUFFLE [RS_38] PartitionCols:_col0 Select Operator [SEL_37] (rows=5619 width=12) Output:["_col0","_col1"] Filter Operator [FIL_36] (rows=5619 width=12) predicate:((d_moy = 12) and d_date_sk is not null) TableScan [TS_6] (rows=73049 width=12) tpcds_bin_partitioned_orc_1000@date_dim,dt,Tbl:COMPLETE,Col:COMPLETE,Output:["d_date_sk","d_year","d_moy"] <-Reducer 2 [SIMPLE_EDGE] SHUFFLE [RS_12] PartitionCols:_col2 Merge Join Operator [MERGEJOIN_28] (rows=3978894 width=112) Conds:RS_32._col0=RS_35._col0(Inner),Output:["_col1","_col2","_col4","_col5"] <-Map 1 [SIMPLE_EDGE] vectorized SHUFFLE [RS_32] PartitionCols:_col0 Select Operator [SEL_31] (rows=2750387156 width=11) Output:["_col0","_col1","_col2"] Filter Operator [FIL_30] (rows=2750387156 width=11) predicate:ss_item_sk is not null TableScan [TS_0] (rows=2750387156 width=11) tpcds_bin_partitioned_orc_1000@store_sales,store_sales,Tbl:COMPLETE,Col:COMPLETE,Output:["ss_item_sk","ss_ext_sales_price"] <-Map 6 [SIMPLE_EDGE] vectorized SHUFFLE [RS_35] PartitionCols:_col0 Select Operator [SEL_34] (rows=434 width=111) Output:["_col0","_col1","_col2"] Filter Operator [FIL_33] (rows=434 width=111) predicate:((i_manufact_id = 436) and i_item_sk is not null) TableScan [TS_3] (rows=300000 width=111) tpcds_bin_partitioned_orc_1000@item,item,Tbl:COMPLETE,Col:COMPLETE,Output:["i_item_sk","i_brand_id","i_brand","i_manufact_id"] CBO on, new plan runs 143.97s with new join sequence store_sales✖item✖date_dim. The input data size of one branch of join is pretty small, should use map join, rather than merge join.
Page24 © Hortonworks Inc. 2011 – 2014. All Rights Reserved SHUFFLE [RS_44] PartitionCols:_col0, _col1, _col2 Group By Operator [GBY_43] (rows=9 width=116) Output:["_col0","_col1","_col2","_col3"],aggregations:["sum(_col1)"],keys:_col8, _col4, _col5 Select Operator [SEL_42] (rows=306061 width=112) Output:["_col8","_col4","_col5","_col1"] Map Join Operator [MAPJOIN_41] (rows=306061 width=112) Conds:MAPJOIN_40._col2=RS_37._col0(Inner),HybridGraceHashJoin:true,Output:["_col1","_col4","_col5","_col8"] <-Map 5 [BROADCAST_EDGE] vectorized BROADCAST [RS_37] PartitionCols:_col0 Select Operator [SEL_36] (rows=5619 width=12) Output:["_col0","_col1"] Filter Operator [FIL_35] (rows=5619 width=12) predicate:((d_moy = 12) and d_date_sk is not null) TableScan [TS_6] (rows=73049 width=12) tpcds_bin_partitioned_orc_1000@date_dim,dt,Tbl:COMPLETE,Col:COMPLETE,Output:["d_date_sk","d_year","d_moy"] <-Map Join Operator [MAPJOIN_40] (rows=3978894 width=112) Conds:SEL_39._col0=RS_34._col0(Inner),HybridGraceHashJoin:true,Output:["_col1","_col2","_col4","_col5"] <-Map 4 [BROADCAST_EDGE] vectorized BROADCAST [RS_34] PartitionCols:_col0 Select Operator [SEL_33] (rows=434 width=111) Output:["_col0","_col1","_col2"] Filter Operator [FIL_32] (rows=434 width=111) predicate:((i_manufact_id = 436) and i_item_sk is not null) TableScan [TS_3] (rows=300000 width=111) tpcds_bin_partitioned_orc_1000@item,item,Tbl:COMPLETE,Col:COMPLETE,Output:["i_item_sk","i_brand_id","i_brand","i_manufact_id"] <-Select Operator [SEL_39] (rows=2750387156 width=11) Output:["_col0","_col1","_col2"] Filter Operator [FIL_38] (rows=2750387156 width=11) predicate:ss_item_sk is not null TableScan [TS_0] (rows=2750387156 width=11) tpcds_bin_partitioned_orc_1000@store_sales,store_sales,Tbl:COMPLETE,Col:COMPLETE,Output:["ss_item_sk","ss_ext_sales_price"] Increase hive.auto.convert.join.noconditionaltask.size= 1,359,688,499, we can see it is now using map join operators. New plan runs 45.84s. store_sales is a partitioned table on the join key ss_sold_date_sk with date_dim table.
Page25 © Hortonworks Inc. 2011 – 2014. All Rights Reserved SHUFFLE [RS_55] PartitionCols:_col0, _col1, _col2 Group By Operator [GBY_54] (rows=9 width=116) Output:["_col0","_col1","_col2","_col3"],aggregations:["sum(_col1)"],keys:_col8, _col4, _col5 Select Operator [SEL_53] (rows=306061 width=112) Output:["_col8","_col4","_col5","_col1"] Map Join Operator [MAPJOIN_52] (rows=306061 width=112) Conds:MAPJOIN_51._col2=RS_45._col0(Inner),HybridGraceHashJoin:true,Output:["_col1","_col4","_col5","_col8"] <-Map 5 [BROADCAST_EDGE] vectorized BROADCAST [RS_45] PartitionCols:_col0 Select Operator [SEL_44] (rows=5619 width=12) Output:["_col0","_col1"] Filter Operator [FIL_43] (rows=5619 width=12) predicate:((d_moy = 12) and d_date_sk is not null) TableScan [TS_6] (rows=73049 width=12) tpcds_bin_partitioned_orc_1000@date_dim,dt,Tbl:COMPLETE,Col:COMPLETE,Output:["d_date_sk","d_year","d_moy"] Dynamic Partitioning Event Operator [EVENT_48] (rows=2809 width=12) Group By Operator [GBY_47] (rows=2809 width=12) Output:["_col0"],keys:_col0 Select Operator [SEL_46] (rows=5619 width=12) Output:["_col0"] Please refer to the previous Select Operator [SEL_44] <-Map Join Operator [MAPJOIN_51] (rows=3978894 width=112) Conds:SEL_50._col0=RS_42._col0(Inner),HybridGraceHashJoin:true,Output:["_col1","_col2","_col4","_col5"] <-Map 4 [BROADCAST_EDGE] vectorized BROADCAST [RS_42] PartitionCols:_col0 Select Operator [SEL_41] (rows=434 width=111) Output:["_col0","_col1","_col2"] Filter Operator [FIL_40] (rows=434 width=111) predicate:((i_manufact_id = 436) and i_item_sk is not null) TableScan [TS_3] (rows=300000 width=111) tpcds_bin_partitioned_orc_1000@item,item,Tbl:COMPLETE,Col:COMPLETE,Output:["i_item_sk","i_brand_id","i_brand","i_manufact_id"] <-Select Operator [SEL_50] (rows=2750387156 width=11) Output:["_col0","_col1","_col2"] Filter Operator [FIL_49] (rows=2750387156 width=11) predicate:ss_item_sk is not null TableScan [TS_0] (rows=2750387156 width=11) tpcds_bin_partitioned_orc_1000@store_sales,store_sales,Tbl:COMPLETE,Col:COMPLETE,Output:["ss_item_sk","ss_ext_sales_price"] By setting hive.tez.dynamic.partition.pruning=true, we can see dynamic partitioning event operators. See more about this in HIVE-7826. New plan runs 31.35s. In the run time, dynamic partition event operator will send values needed to prune to the application master - where splits are generated and tasks are submitted. Using these values we can strip out any unneeded partitions dynamically, while the query is running.
Page26 © Hortonworks Inc. 2011 – 2014. All Rights Reserved Performance debugging summary (TPC-DS Q3, 1TB) 0 20 40 60 80 100 120 140 160 180 Original Join re-order Join selection Dynamic partition pruning Queryexecutiontime(s) Query execution time Continuous improvement
Page27 © Hortonworks Inc. 2011 – 2014. All Rights Reserved Integration with Apache Ambari 1. Type the query here 2. Click “explain” 3. explain plan will be shown
Page28 © Hortonworks Inc. 2011 – 2014. All Rights Reserved  “set hive.tez.exec.print.summary=true;”  Get more insights on query performance Can be used along with Tez vertex runtime stats Runtime stats
Page29 © Hortonworks Inc. 2011 – 2014. All Rights Reserved Summary • Show old style Hive explain plan is hard to read. • Verbose with too much redundant information, hard to follow how data flows, cost of operator is unclear • Compare with Postgres over a body of 500+ realistic SQL queries and identify the candidate improving points • Introduce new style Hive explain plan • Use a concrete example to help understand the explain: execution cost, join sequence and orchestration of the operator tree • Use the new Hive explain plan to performance debug TPC-DS Q3 • Show the improvement after join re-ordering, join selection, and dynamic partition pruning • Integration/interaction with other system/tools
Page30 © Hortonworks Inc. 2011 – 2014. All Rights Reserved Future work -- Some gaps remain after HIVE-9780 • Put the real schema, table and column names in the explain plan, e.g., no more _col0 etc. • This will help users to understand the plan better • HIVE-8681: CBO: Column names are missing from join expression in Map join with CBO enabled • Get an equivalent of “EXPLAIN ANALYZE” – such as operator level runtime stats and warnings. • This will help users to find out the gap between estimated cost and real cost • HIVE-14362: Support explain analyze in Hive
Page31 © Hortonworks Inc. 2011 – 2014. All Rights Reserved SHUFFLE [RS_55] PartitionCols:d_year, i_brand, i_brand_id Group By Operator [GBY_54] (rows=9/10 width=116) Output:["d_year","sum_agg","i_brand","i_brand_id"],aggregations:["sum(ss_ext_sales_price)"],keys:d_year, i_brand, i_brand_id Select Operator [SEL_53] (rows=306061/324651 width=112) Output:["d_year","i_brand","i_brand_id","ss_ext_sales_price"] Map Join Operator [MAPJOIN_52] (rows=306061/324651 width=112) Conds:MAPJOIN_51. ss_sold_date_sk=RS_45. d_date_sk(Inner),HybridGraceHashJoin:true,Output:["d_year","i_brand","i_brand_id","ss_ext_sales_price"] <-Map 5 [BROADCAST_EDGE] vectorized BROADCAST [RS_45] PartitionCols:d_date_sk Select Operator [SEL_44] (rows=5619/6034 width=12) Output:["d_date_sk","d_year"] Filter Operator [FIL_43] (rows=5619/6034 width=12) predicate:((d_moy = 12) and d_date_sk is not null) TableScan [TS_6] (rows=73049/73049 width=12) tpcds_bin_partitioned_orc_1000@date_dim,dt,Tbl:COMPLETE,Col:COMPLETE,Output:["d_date_sk","d_year","d_moy"] Dynamic Partitioning Event Operator [EVENT_48] (rows=2809 width=12) Group By Operator [GBY_47] (rows=2809/2324 width=12) Output:["d_date_sk"],keys:d_date_sk Select Operator [SEL_46] (rows=5619/6034 width=12) Output:["d_date_sk"] Please refer to the previous Select Operator [SEL_44] <-Map Join Operator [MAPJOIN_51] (rows=3978894/4202377 width=112) Conds:SEL_50.ss_item_sk=RS_42. i_item_sk(Inner),HybridGraceHashJoin:true,Output:["ss_ext_sales_price",” ss_sold_date_sk","i_brand","i_brand_id"] <-Map 4 [BROADCAST_EDGE] vectorized BROADCAST [RS_42] PartitionCols:i_item_sk Select Operator [SEL_41] (rows=434/453 width=111) Output:[” i_item_sk","i_brand_id","i_brand"] Filter Operator [FIL_40] (rows=434/453 width=111) predicate:((i_manufact_id = 436) and i_item_sk is not null) TableScan [TS_3] (rows=300000/300000 width=111) tpcds_bin_partitioned_orc_1000@item,item,Tbl:COMPLETE,Col:COMPLETE,Output:["i_item_sk","i_brand_id","i_brand","i_manufact_id"] <-Select Operator [SEL_50] (rows=2750387156/2750387156 width=11) Output:["ss_item_sk","ss_ext_sales_price","ss_sold_date_sk"] Filter Operator [FIL_49] (rows=2750387156/2750387156 width=11) predicate:ss_item_sk is not null TableScan [TS_0] (rows=2750387156/2750387156 width=11) tpcds_bin_partitioned_orc_1000@store_sales,store_sales,Tbl:COMPLETE,Col:COMPLETE,Output:["ss_item_sk","ss_ext_sales_price"]
Page32 © Hortonworks Inc. 2011 – 2014. All Rights Reserved Acknowledgement • We thank all the anonymous reviewers’ votes to give us this opportunity to share our work. • Part of the slides are borrowed from or modified based on Carter Shanklin and Rajesh Balamohan’s slides. • We thank Gunther Hagleitner for all the support and inputs. • We thank Sapin Amin for setting up the testing cluster.
Page33 © Hortonworks Inc. 2011 – 2014. All Rights Reserved Thank you! Questions?

How to understand and analyze Apache Hive query execution plan for performance debugging

  • 1.
    How to understandand analyze Apache Hive query execution plan for performance debugging © Hortonworks Inc. 2011 – 2015. All Rights Reserved Pengcheng Xiong and Ashutosh Chauhan Hortonworks Inc., Apache Hive Community {pxiong,ashutosh}@hortonworks.com
  • 2.
    Page2 © HortonworksInc. 2011 – 2014. All Rights Reserved Goals: • WHY old style Hive explain plan is hard to read • Compare the old style explain with Postgres over a body of 500+ realistic SQL queries. • WHAT is new style Hive explain plan • Show orchestration of the tasks and operator trees, join sequences and algorithms, operator execution costs • HOW to performance debug a real query by analyzing the new Hive explain plan • Identify the potential improvement by changing join sequence, join algorithm and etc • Show the real improvement by running the query in real cluster • Integration/interaction with other system/tools • Future work
  • 3.
    Page3 © HortonworksInc. 2011 – 2014. All Rights Reserved WHY old style Hive explain plan is hard to read • M**** company’s schema and queries. • Comparison of explain plans between Hive and Postgres for the 528 queries they can both execute. • Hive: “explain”, Postgres: “explain verbose” Hive “old style”, 233.5 postgres, 53.8 Hive “old style”, 1289 postgres, 328.6 Average Lines Per Explain Plan Average Words Per Explain Plan N = 528 queries
  • 4.
    Page4 © HortonworksInc. 2011 – 2014. All Rights Reserved We can see that Hive old style explain is quite verbose, is it necessary? select a11.PBTNAME PBTNAME from PMT_INVENTORY a11 join LU_MONTH a12 on (a11.QUARTER_ID = a12.QUARTER_ID) where a12.MONTH_ID in (200607, 200606) group by a11.PBTNAME;
  • 5.
    Page5 © HortonworksInc. 2011 – 2014. All Rights Reserved High level plan comparison: Postgres QUERY PLAN --------------------------------------------------------------------------------- Group (cost=3.83..3.84 rows=2 width=18) Output: a11.pbtname Group Key: a11.pbtname -> Sort (cost=3.83..3.84 rows=2 width=18) Output: a11.pbtname Sort Key: a11.pbtname -> Hash Join (cost=2.62..3.83 rows=2 width=18) Output: a11.pbtname Hash Cond: (a11.quarter_id = a12.quarter_id) -> Seq Scan on public.pmt_inventory a11 (cost=0.00..1.12 rows=12 width=22) Output: a11.quarter_id, a11.pbtname -> Hash (cost=2.60..2.60 rows=2 width=4) Output: a12.quarter_id -> Seq Scan on public.lu_month a12 (cost=0.00..2.60 rows=2 width=4) Output: a12.quarter_id Filter: (a12.month_id = ANY ('{200607,200606}'::integer[])) 16 lines
  • 6.
    Page6 © HortonworksInc. 2011 – 2014. All Rights Reserved High level plan comparison: Hive STAGE DEPENDENCIES: Stage-1 is a root stage Stage-0 depends on stages: Stage-1 STAGE PLANS: Stage: Stage-1 Tez Edges: Map 2 <- Map 1 (BROADCAST_EDGE) Reducer 3 <- Map 2 (SIMPLE_EDGE) DagName: carter_20151114133018_2f2f0101-d14d-4688-bbb1-db67055016c3:946 Vertices: Map 1 Map Operator Tree: TableScan alias: a11 filterExpr: quarter_id is not null (type: boolean) Statistics: Num rows: 12 Data size: 1260 Basic stats: COMPLETE Column stats: NONE Filter Operator predicate: quarter_id is not null (type: boolean) Statistics: Num rows: 6 Data size: 630 Basic stats: COMPLETE Column stats: NONE Reduce Output Operator key expressions: quarter_id (type: int) sort order: + Map-reduce partition columns: quarter_id (type: int) Statistics: Num rows: 6 Data size: 630 Basic stats: COMPLETE Column stats: NONE value expressions: pbtname (type: string) Execution mode: vectorized Map 2 Map Operator Tree: TableScan alias: a12 filterExpr: (quarter_id is not null and (month_id) IN (200607, 200606)) (type: boolean) Statistics: Num rows: 48 Data size: 46752 Basic stats: COMPLETE Column stats: NONE Filter Operator predicate: (quarter_id is not null and (month_id) IN (200607, 200606)) (type: boolean) Statistics: Num rows: 12 Data size: 11688 Basic stats: COMPLETE Column stats: NONE Map Join Operator condition map: Inner Join 0 to 1 keys: 0 quarter_id (type: int) 1 quarter_id (type: int) outputColumnNames: _col1 input vertices: 0 Map 1 Statistics: Num rows: 13 Data size: 12856 Basic stats: COMPLETE Column stats: NONE HybridGraceHashJoin: true Group By Operator keys: _col1 (type: string) mode: hash outputColumnNames: _col0 Statistics: Num rows: 13 Data size: 12856 Basic stats: COMPLETE Column stats: NONE Reduce Output Operator key expressions: _col0 (type: string) sort order: + Map-reduce partition columns: _col0 (type: string) Statistics: Num rows: 13 Data size: 12856 Basic stats: COMPLETE Column stats: NONE Execution mode: vectorized Reducer 3 Reduce Operator Tree: Group By Operator keys: KEY._col0 (type: string) mode: mergepartial outputColumnNames: _col0 Statistics: Num rows: 6 Data size: 5933 Basic stats: COMPLETE Column stats: NONE File Output Operator compressed: false Statistics: Num rows: 6 Data size: 5933 Basic stats: COMPLETE Column stats: NONE table: input format: org.apache.hadoop.mapred.TextInputFormat output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe Stage: Stage-0 Fetch Operator limit: -1 Processor Tree: ListSink Too verbose, need a magnifier! 80+ lines
  • 7.
    Page7 © HortonworksInc. 2011 – 2014. All Rights Reserved Map 2 Operator Map 2 Map Operator Tree: TableScan alias: a12 filterExpr: (quarter_id is not null and (month_id) IN (200607, 200606)) (type: boolean) Statistics: Num rows: 48 Data size: 46752 Basic stats: COMPLETE Column stats: NONE Filter Operator predicate: (quarter_id is not null and (month_id) IN (200607, 200606)) (type: boolean) Statistics: Num rows: 12 Data size: 11688 Basic stats: COMPLETE Column stats: NONE Map Join Operator condition map: Inner Join 0 to 1 keys: 0 quarter_id (type: int) 1 quarter_id (type: int) outputColumnNames: _col1 input vertices: 0 Map 1 Statistics: Num rows: 13 Data size: 12856 Basic stats: COMPLETE Column stats: NONE HybridGraceHashJoin: true Group By Operator keys: _col1 (type: string) mode: hash outputColumnNames: _col0 Statistics: Num rows: 13 Data size: 12856 Basic stats: COMPLETE Column stats: NONE Reduce Output Operator key expressions: _col0 (type: string) sort order: + Map-reduce partition columns: _col0 (type: string) Statistics: Num rows: 13 Data size: 12856 Basic stats: COMPLETE Column stats: NONE Execution mode: vectorized Data flows from top to bottom Each operator has 0 or 1 child
  • 8.
    Page8 © HortonworksInc. 2011 – 2014. All Rights Reserved Map 2 Operator Map 2 Map Operator Tree: TableScan alias: a12 filterExpr: (quarter_id is not null and (month_id) IN (200607, 200606)) (type: boolean) Statistics: Num rows: 48 Data size: 46752 Basic stats: COMPLETE Column stats: NONE Filter Operator predicate: (quarter_id is not null and (month_id) IN (200607, 200606)) (type: boolean) Statistics: Num rows: 12 Data size: 11688 Basic stats: COMPLETE Column stats: NONE Map Join Operator condition map: Inner Join 0 to 1 keys: 0 quarter_id (type: int) 1 quarter_id (type: int) outputColumnNames: _col1 input vertices: 0 Map 1 Statistics: Num rows: 13 Data size: 12856 Basic stats: COMPLETE Column stats: NONE HybridGraceHashJoin: true Group By Operator keys: _col1 (type: string) mode: hash outputColumnNames: _col0 Statistics: Num rows: 13 Data size: 12856 Basic stats: COMPLETE Column stats: NONE Reduce Output Operator key expressions: _col0 (type: string) sort order: + Map-reduce partition columns: _col0 (type: string) Statistics: Num rows: 13 Data size: 12856 Basic stats: COMPLETE Column stats: NONE Execution mode: vectorized Must scroll to another part of the plan to see what this is
  • 9.
    Page9 © HortonworksInc. 2011 – 2014. All Rights Reserved Map 1 Operator Map 1 Map Operator Tree: TableScan alias: a11 filterExpr: quarter_id is not null (type: boolean) Statistics: Num rows: 12 Data size: 1260 Basic stats: COMPLETE Column stats: NONE Filter Operator predicate: quarter_id is not null (type: boolean) Statistics: Num rows: 6 Data size: 630 Basic stats: COMPLETE Column stats: NONE Reduce Output Operator key expressions: quarter_id (type: int) sort order: + Map-reduce partition columns: quarter_id (type: int) Statistics: Num rows: 6 Data size: 630 Basic stats: COMPLETE Column stats: NONE value expressions: pbtname (type: string) Execution mode: vectorized Actual table name (PMT_INVENTORY) not mentioned anywhere, only the alias
  • 10.
    Page10 © HortonworksInc. 2011 – 2014. All Rights Reserved Map 1 Operator Map 1 Map Operator Tree: TableScan alias: a11 filterExpr: quarter_id is not null (type: boolean) Statistics: Num rows: 12 Data size: 1260 Basic stats: COMPLETE Column stats: NONE Filter Operator predicate: quarter_id is not null (type: boolean) Statistics: Num rows: 6 Data size: 630 Basic stats: COMPLETE Column stats: NONE Reduce Output Operator key expressions: quarter_id (type: int) sort order: + Map-reduce partition columns: quarter_id (type: int) Statistics: Num rows: 6 Data size: 630 Basic stats: COMPLETE Column stats: NONE value expressions: pbtname (type: string) Execution mode: vectorized How much of this information is really necessary to SQL users?
  • 11.
    Page11 © HortonworksInc. 2011 – 2014. All Rights Reserved Back to Postgres QUERY PLAN --------------------------------------------------------------------------------- Group (cost=3.83..3.84 rows=2 width=18) Output: a11.pbtname Group Key: a11.pbtname -> Sort (cost=3.83..3.84 rows=2 width=18) Output: a11.pbtname Sort Key: a11.pbtname -> Hash Join (cost=2.62..3.83 rows=2 width=18) Output: a11.pbtname Hash Cond: (a11.quarter_id = a12.quarter_id) -> Seq Scan on public.pmt_inventory a11 (cost=0.00..1.12 rows=12 width=22) Output: a11.quarter_id, a11.pbtname -> Hash (cost=2.60..2.60 rows=2 width=4) Output: a12.quarter_id -> Seq Scan on public.lu_month a12 (cost=0.00..2.60 rows=2 width=4) Output: a12.quarter_id Filter: (a12.month_id = ANY ('{200607,200606}'::integer[])) Data flows bottom to top
  • 12.
    Page12 © HortonworksInc. 2011 – 2014. All Rights Reserved Back to Postgres QUERY PLAN --------------------------------------------------------------------------------- Group (cost=3.83..3.84 rows=2 width=18) Output: a11.pbtname Group Key: a11.pbtname -> Sort (cost=3.83..3.84 rows=2 width=18) Output: a11.pbtname Sort Key: a11.pbtname -> Hash Join (cost=2.62..3.83 rows=2 width=18) Output: a11.pbtname Hash Cond: (a11.quarter_id = a12.quarter_id) -> Seq Scan on public.pmt_inventory a11 (cost=0.00..1.12 rows=12 width=22) Output: a11.quarter_id, a11.pbtname -> Hash (cost=2.60..2.60 rows=2 width=4) Output: a12.quarter_id -> Seq Scan on public.lu_month a12 (cost=0.00..2.60 rows=2 width=4) Output: a12.quarter_id Filter: (a12.month_id = ANY ('{200607,200606}'::integer[])) Operators have multiple children when it makes sense
  • 13.
    Page13 © HortonworksInc. 2011 – 2014. All Rights Reserved Back to Postgres QUERY PLAN --------------------------------------------------------------------------------- Group (cost=3.83..3.84 rows=2 width=18) Output: a11.pbtname Group Key: a11.pbtname -> Sort (cost=3.83..3.84 rows=2 width=18) Output: a11.pbtname Sort Key: a11.pbtname -> Hash Join (cost=2.62..3.83 rows=2 width=18) Output: a11.pbtname Hash Cond: (a11.quarter_id = a12.quarter_id) -> Seq Scan on public.pmt_inventory a11 (cost=0.00..1.12 rows=12 width=22) Output: a11.quarter_id, a11.pbtname -> Hash (cost=2.60..2.60 rows=2 width=4) Output: a12.quarter_id -> Seq Scan on public.lu_month a12 (cost=0.00..2.60 rows=2 width=4) Output: a12.quarter_id Filter: (a12.month_id = ANY ('{200607,200606}'::integer[])) Join is done using a scan of pmt_inventory and a hash following a scan of lu_month. All this info is available without referring to a stage plan. IOW you don’t have to jump around in the plan.
  • 14.
    Page14 © HortonworksInc. 2011 – 2014. All Rights Reserved Back to Postgres QUERY PLAN --------------------------------------------------------------------------------- Group (cost=3.83..3.84 rows=2 width=18) Output: a11.pbtname Group Key: a11.pbtname -> Sort (cost=3.83..3.84 rows=2 width=18) Output: a11.pbtname Sort Key: a11.pbtname -> Hash Join (cost=2.62..3.83 rows=2 width=18) Output: a11.pbtname Hash Cond: (a11.quarter_id = a12.quarter_id) -> Seq Scan on public.pmt_inventory a11 (cost=0.00..1.12 rows=12 width=22) Output: a11.quarter_id, a11.pbtname -> Hash (cost=2.60..2.60 rows=2 width=4) Output: a12.quarter_id -> Seq Scan on public.lu_month a12 (cost=0.00..2.60 rows=2 width=4) Output: a12.quarter_id Filter: (a12.month_id = ANY ('{200607,200606}'::integer[])) Actual schema / table names visible
  • 15.
    Page15 © HortonworksInc. 2011 – 2014. All Rights Reserved Back to Postgres QUERY PLAN --------------------------------------------------------------------------------- Group (cost=3.83..3.84 rows=2 width=18) Output: a11.pbtname Group Key: a11.pbtname -> Sort (cost=3.83..3.84 rows=2 width=18) Output: a11.pbtname Sort Key: a11.pbtname -> Hash Join (cost=2.62..3.83 rows=2 width=18) Output: a11.pbtname Hash Cond: (a11.quarter_id = a12.quarter_id) -> Seq Scan on public.pmt_inventory a11 (cost=0.00..1.12 rows=12 width=22) Output: a11.quarter_id, a11.pbtname -> Hash (cost=2.60..2.60 rows=2 width=4) Output: a12.quarter_id -> Seq Scan on public.lu_month a12 (cost=0.00..2.60 rows=2 width=4) Output: a12.quarter_id Filter: (a12.month_id = ANY ('{200607,200606}'::integer[])) Cost mentioned once per operator Cost monotonically increases as you go up
  • 16.
    Page16 © HortonworksInc. 2011 – 2014. All Rights Reserved WHAT is new style Hive explain plan (HIVE-9780) • Set hive.explain.user=true; (by default). Use Tez, LLAP, etc Stage-1 Reducer 3 File Output Operator [FS_14] Group By Operator [GBY_12] (rows=8 width=101) Output:["_col0"],keys:KEY._col0 <-Map 2 [SIMPLE_EDGE] SHUFFLE [RS_11] PartitionCols:_col0 Group By Operator [GBY_10] (rows=8 width=101) Output:["_col0"],keys:_col1 Map Join Operator [MAPJOIN_19] (rows=33 width=101) Conds:RS_6._col0=SEL_5._col1(Inner),HybridGraceHashJoin:true,Output:["_col1"] <-Map 1 [BROADCAST_EDGE] BROADCAST [RS_6] PartitionCols:_col0 Select Operator [SEL_2] (rows=12 width=105) Output:["_col0","_col1"] Filter Operator [FIL_17] (rows=12 width=105) predicate:quarter_id is not null TableScan [TS_0] (rows=12 width=105) m****@pmt_inventory,a11,Tbl:COMPLETE,Col:COMPLETE,Output:["quarter_id","pbtname"] <-Select Operator [SEL_5] (rows=48 width=8) Output:["_col1"] Filter Operator [FIL_18] (rows=48 width=8) predicate:((month_id) IN (200607, 200606) and quarter_id is not null) TableScan [TS_3] (rows=48 width=8) m****@lu_month,a12,Tbl:COMPLETE,Col:COMPLETE,Output:["month_id","quarter_id"] Immediate Notes: 1. Much smaller 2. Can be read in order
  • 17.
    Page17 © HortonworksInc. 2011 – 2014. All Rights Reserved WHAT is new style Hive explain plan (HIVE-9780) Stage-1 Reducer 3 File Output Operator [FS_14] Group By Operator [GBY_12] (rows=8 width=101) Output:["_col0"],keys:KEY._col0 <-Map 2 [SIMPLE_EDGE] SHUFFLE [RS_11] PartitionCols:_col0 Group By Operator [GBY_10] (rows=8 width=101) Output:["_col0"],keys:_col1 Map Join Operator [MAPJOIN_19] (rows=33 width=101) Conds:RS_6._col0=SEL_5._col1(Inner),HybridGraceHashJoin:true,Output:["_col1"] <-Map 1 [BROADCAST_EDGE] BROADCAST [RS_6] PartitionCols:_col0 Select Operator [SEL_2] (rows=12 width=105) Output:["_col0","_col1"] Filter Operator [FIL_17] (rows=12 width=105) predicate:quarter_id is not null TableScan [TS_0] (rows=12 width=105) m****@pmt_inventory,a11,Tbl:COMPLETE,Col:COMPLETE,Output:["quarter_id","pbtname"] <-Select Operator [SEL_5] (rows=48 width=8) Output:["_col1"] Filter Operator [FIL_18] (rows=48 width=8) predicate:((month_id) IN (200607, 200606) and quarter_id is not null) TableScan [TS_3] (rows=48 width=8) m****@lu_month,a12,Tbl:COMPLETE,Col:COMPLETE,Output:["month_id","quarter_id"] Data flows bottom to top
  • 18.
    Page18 © HortonworksInc. 2011 – 2014. All Rights Reserved WHAT is new style Hive explain plan (HIVE-9780) Stage-1 Reducer 3 File Output Operator [FS_14] Group By Operator [GBY_12] (rows=8 width=101) Output:["_col0"],keys:KEY._col0 <-Map 2 [SIMPLE_EDGE] SHUFFLE [RS_11] PartitionCols:_col0 Group By Operator [GBY_10] (rows=8 width=101) Output:["_col0"],keys:_col1 Map Join Operator [MAPJOIN_19] (rows=33 width=101) Conds:RS_6._col0=SEL_5._col1(Inner),HybridGraceHashJoin:true,Output:["_col1"] <-Map 1 [BROADCAST_EDGE] BROADCAST [RS_6] PartitionCols:_col0 Select Operator [SEL_2] (rows=12 width=105) Output:["_col0","_col1"] Filter Operator [FIL_17] (rows=12 width=105) predicate:quarter_id is not null TableScan [TS_0] (rows=12 width=105) m****@pmt_inventory,a11,Tbl:COMPLETE,Col:COMPLETE,Output:["quarter_id","pbtname"] <-Select Operator [SEL_5] (rows=48 width=8) Output:["_col1"] Filter Operator [FIL_18] (rows=48 width=8) predicate:((month_id) IN (200607, 200606) and quarter_id is not null) TableScan [TS_3] (rows=48 width=8) m****@lu_month,a12,Tbl:COMPLETE,Col:COMPLETE,Output:["month_id","quarter_id"] Operators have multiple children when it makes sense
  • 19.
    Page19 © HortonworksInc. 2011 – 2014. All Rights Reserved WHAT is new style Hive explain plan (HIVE-9780) Stage-1 Reducer 3 File Output Operator [FS_14] Group By Operator [GBY_12] (rows=8 width=101) Output:["_col0"],keys:KEY._col0 <-Map 2 [SIMPLE_EDGE] SHUFFLE [RS_11] PartitionCols:_col0 Group By Operator [GBY_10] (rows=8 width=101) Output:["_col0"],keys:_col1 Map Join Operator [MAPJOIN_19] (rows=33 width=101) Conds:RS_6._col0=SEL_5._col1(Inner),HybridGraceHashJoin:true,Output:["_col1"] <-Map 1 [BROADCAST_EDGE] BROADCAST [RS_6] PartitionCols:_col0 Select Operator [SEL_2] (rows=12 width=105) Output:["_col0","_col1"] Filter Operator [FIL_17] (rows=12 width=105) predicate:quarter_id is not null TableScan [TS_0] (rows=12 width=105) m****@pmt_inventory,a11,Tbl:COMPLETE,Col:COMPLETE,Output:["quarter_id","pbtname"] <-Select Operator [SEL_5] (rows=48 width=8) Output:["_col1"] Filter Operator [FIL_18] (rows=48 width=8) predicate:((month_id) IN (200607, 200606) and quarter_id is not null) TableScan [TS_3] (rows=48 width=8) m****@lu_month,a12,Tbl:COMPLETE,Col:COMPLETE,Output:["month_id","quarter_id"] Join’s information is clear pmt_inventory is broadcasted to lu_month and a MapJoin is done
  • 20.
    Page20 © HortonworksInc. 2011 – 2014. All Rights Reserved WHAT is new style Hive explain plan (HIVE-9780) Stage-1 Reducer 3 File Output Operator [FS_14] Group By Operator [GBY_12] (rows=8 width=101) Output:["_col0"],keys:KEY._col0 <-Map 2 [SIMPLE_EDGE] SHUFFLE [RS_11] PartitionCols:_col0 Group By Operator [GBY_10] (rows=8 width=101) Output:["_col0"],keys:_col1 Map Join Operator [MAPJOIN_19] (rows=33 width=101) Conds:RS_6._col0=SEL_5._col1(Inner),HybridGraceHashJoin:true,Output:["_col1"] <-Map 1 [BROADCAST_EDGE] BROADCAST [RS_6] PartitionCols:_col0 Select Operator [SEL_2] (rows=12 width=105) Output:["_col0","_col1"] Filter Operator [FIL_17] (rows=12 width=105) predicate:quarter_id is not null TableScan [TS_0] (rows=12 width=105) m****@pmt_inventory,a11,Tbl:COMPLETE,Col:COMPLETE,Output:["quarter_id","pbtname"] <-Select Operator [SEL_5] (rows=48 width=8) Output:["_col1"] Filter Operator [FIL_18] (rows=48 width=8) predicate:((month_id) IN (200607, 200606) and quarter_id is not null) TableScan [TS_3] (rows=48 width=8) m****@lu_month,a12,Tbl:COMPLETE,Col:COMPLETE,Output:["month_id","quarter_id"] Cost mentioned once per operator
  • 21.
    Page21 © HortonworksInc. 2011 – 2014. All Rights Reserved HOW to performance debug a real query (TPC-DS Q3, 1TB) select dt.d_year, item.i_brand_id brand_id, item.i_brand brand, sum(ss_ext_sales_price) sum_agg from date_dim dt, store_sales, item where dt.d_date_sk = store_sales.ss_sold_date_sk and store_sales.ss_item_sk = item.i_item_sk and item.i_manufact_id = 436 and dt.d_moy = 12 group by dt.d_year , item.i_brand , item.i_brand_id order by dt.d_year , sum_agg desc , brand_id limit 10 partitioned by ss_sold_date_sk
  • 22.
    Page22 © HortonworksInc. 2011 – 2014. All Rights Reserved <-Reducer 3 [SIMPLE_EDGE] SHUFFLE [RS_15] PartitionCols:_col0, _col1, _col2 Group By Operator [GBY_14] (rows=1 width=116) Output:["_col0","_col1","_col2","_col3"],aggregations:["sum(_col45)"],keys:_col6, _col65, _col64 Select Operator [SEL_13] (rows=76515 width=128) Output:["_col6","_col65","_col64","_col45"] Filter Operator [FIL_23] (rows=76515 width=128) predicate:((_col0 = _col53) and (_col32 = _col57)) Merge Join Operator [MERGEJOIN_28] (rows=306061 width=128) Conds:RS_8._col32=RS_34.i_item_sk(Inner),Output:["_col0","_col6","_col32","_col45","_col53","_col57","_col64","_col65"] <-Map 7 [SIMPLE_EDGE] vectorized SHUFFLE [RS_34] PartitionCols:i_item_sk Filter Operator [FIL_33] (rows=434 width=111) predicate:(i_item_sk is not null and (i_manufact_id = 436)) TableScan [TS_2] (rows=300000 width=111) tpcds_bin_partitioned_orc_1000@item,item,Tbl:COMPLETE,Col:COMPLETE,Output:["i_item_sk","i_brand_id","i_brand","i_manufact_id"] <-Reducer 2 [SIMPLE_EDGE] SHUFFLE [RS_8] PartitionCols:_col32 Merge Join Operator [MERGEJOIN_27] (rows=211562452 width=20) Conds:RS_30.d_date_sk=RS_32.ss_sold_date_sk(Inner),Output:["_col0","_col6","_col32","_col45","_col53"] <-Map 1 [SIMPLE_EDGE] vectorized SHUFFLE [RS_30] PartitionCols:d_date_sk Filter Operator [FIL_29] (rows=5619 width=12) predicate:(d_date_sk is not null and (d_moy = 12)) TableScan [TS_0] (rows=73049 width=12) tpcds_bin_partitioned_orc_1000@date_dim,dt,Tbl:COMPLETE,Col:COMPLETE,Output:["d_date_sk","d_year","d_moy"] <-Map 6 [SIMPLE_EDGE] vectorized SHUFFLE [RS_32] PartitionCols:ss_sold_date_sk Filter Operator [FIL_31] (rows=2750387156 width=11) predicate:ss_item_sk is not null TableScan [TS_1] (rows=2750387156 width=11) tpcds_bin_partitioned_orc_1000@store_sales,store_sales,Tbl:COMPLETE,Col:COMPLETE,Output:["ss_item_sk","ss_ext_sales_price"] Original plan runs 163.33s. Sounds like column pruning and predicate push down are working fine. However, the join sequence store_sales✖date_dim✖item is not good enough. A better one is store_sales✖item✖date_dim Table Cardinality Cardinality after filter Selectivity date_dim 73K 5619 7.6% item 300K 434 0.14%
  • 23.
    Page23 © HortonworksInc. 2011 – 2014. All Rights Reserved <-Reducer 3 [SIMPLE_EDGE] SHUFFLE [RS_17] PartitionCols:_col0, _col1, _col2 Group By Operator [GBY_16] (rows=9 width=116) Output:["_col0","_col1","_col2","_col3"],aggregations:["sum(_col1)"],keys:_col8, _col4, _col5 Select Operator [SEL_15] (rows=306061 width=112) Output:["_col8","_col4","_col5","_col1"] Merge Join Operator [MERGEJOIN_29] (rows=306061 width=112) Conds:RS_12._col2=RS_38._col0(Inner),Output:["_col1","_col4","_col5","_col8"] <-Map 7 [SIMPLE_EDGE] vectorized SHUFFLE [RS_38] PartitionCols:_col0 Select Operator [SEL_37] (rows=5619 width=12) Output:["_col0","_col1"] Filter Operator [FIL_36] (rows=5619 width=12) predicate:((d_moy = 12) and d_date_sk is not null) TableScan [TS_6] (rows=73049 width=12) tpcds_bin_partitioned_orc_1000@date_dim,dt,Tbl:COMPLETE,Col:COMPLETE,Output:["d_date_sk","d_year","d_moy"] <-Reducer 2 [SIMPLE_EDGE] SHUFFLE [RS_12] PartitionCols:_col2 Merge Join Operator [MERGEJOIN_28] (rows=3978894 width=112) Conds:RS_32._col0=RS_35._col0(Inner),Output:["_col1","_col2","_col4","_col5"] <-Map 1 [SIMPLE_EDGE] vectorized SHUFFLE [RS_32] PartitionCols:_col0 Select Operator [SEL_31] (rows=2750387156 width=11) Output:["_col0","_col1","_col2"] Filter Operator [FIL_30] (rows=2750387156 width=11) predicate:ss_item_sk is not null TableScan [TS_0] (rows=2750387156 width=11) tpcds_bin_partitioned_orc_1000@store_sales,store_sales,Tbl:COMPLETE,Col:COMPLETE,Output:["ss_item_sk","ss_ext_sales_price"] <-Map 6 [SIMPLE_EDGE] vectorized SHUFFLE [RS_35] PartitionCols:_col0 Select Operator [SEL_34] (rows=434 width=111) Output:["_col0","_col1","_col2"] Filter Operator [FIL_33] (rows=434 width=111) predicate:((i_manufact_id = 436) and i_item_sk is not null) TableScan [TS_3] (rows=300000 width=111) tpcds_bin_partitioned_orc_1000@item,item,Tbl:COMPLETE,Col:COMPLETE,Output:["i_item_sk","i_brand_id","i_brand","i_manufact_id"] CBO on, new plan runs 143.97s with new join sequence store_sales✖item✖date_dim. The input data size of one branch of join is pretty small, should use map join, rather than merge join.
  • 24.
    Page24 © HortonworksInc. 2011 – 2014. All Rights Reserved SHUFFLE [RS_44] PartitionCols:_col0, _col1, _col2 Group By Operator [GBY_43] (rows=9 width=116) Output:["_col0","_col1","_col2","_col3"],aggregations:["sum(_col1)"],keys:_col8, _col4, _col5 Select Operator [SEL_42] (rows=306061 width=112) Output:["_col8","_col4","_col5","_col1"] Map Join Operator [MAPJOIN_41] (rows=306061 width=112) Conds:MAPJOIN_40._col2=RS_37._col0(Inner),HybridGraceHashJoin:true,Output:["_col1","_col4","_col5","_col8"] <-Map 5 [BROADCAST_EDGE] vectorized BROADCAST [RS_37] PartitionCols:_col0 Select Operator [SEL_36] (rows=5619 width=12) Output:["_col0","_col1"] Filter Operator [FIL_35] (rows=5619 width=12) predicate:((d_moy = 12) and d_date_sk is not null) TableScan [TS_6] (rows=73049 width=12) tpcds_bin_partitioned_orc_1000@date_dim,dt,Tbl:COMPLETE,Col:COMPLETE,Output:["d_date_sk","d_year","d_moy"] <-Map Join Operator [MAPJOIN_40] (rows=3978894 width=112) Conds:SEL_39._col0=RS_34._col0(Inner),HybridGraceHashJoin:true,Output:["_col1","_col2","_col4","_col5"] <-Map 4 [BROADCAST_EDGE] vectorized BROADCAST [RS_34] PartitionCols:_col0 Select Operator [SEL_33] (rows=434 width=111) Output:["_col0","_col1","_col2"] Filter Operator [FIL_32] (rows=434 width=111) predicate:((i_manufact_id = 436) and i_item_sk is not null) TableScan [TS_3] (rows=300000 width=111) tpcds_bin_partitioned_orc_1000@item,item,Tbl:COMPLETE,Col:COMPLETE,Output:["i_item_sk","i_brand_id","i_brand","i_manufact_id"] <-Select Operator [SEL_39] (rows=2750387156 width=11) Output:["_col0","_col1","_col2"] Filter Operator [FIL_38] (rows=2750387156 width=11) predicate:ss_item_sk is not null TableScan [TS_0] (rows=2750387156 width=11) tpcds_bin_partitioned_orc_1000@store_sales,store_sales,Tbl:COMPLETE,Col:COMPLETE,Output:["ss_item_sk","ss_ext_sales_price"] Increase hive.auto.convert.join.noconditionaltask.size= 1,359,688,499, we can see it is now using map join operators. New plan runs 45.84s. store_sales is a partitioned table on the join key ss_sold_date_sk with date_dim table.
  • 25.
    Page25 © HortonworksInc. 2011 – 2014. All Rights Reserved SHUFFLE [RS_55] PartitionCols:_col0, _col1, _col2 Group By Operator [GBY_54] (rows=9 width=116) Output:["_col0","_col1","_col2","_col3"],aggregations:["sum(_col1)"],keys:_col8, _col4, _col5 Select Operator [SEL_53] (rows=306061 width=112) Output:["_col8","_col4","_col5","_col1"] Map Join Operator [MAPJOIN_52] (rows=306061 width=112) Conds:MAPJOIN_51._col2=RS_45._col0(Inner),HybridGraceHashJoin:true,Output:["_col1","_col4","_col5","_col8"] <-Map 5 [BROADCAST_EDGE] vectorized BROADCAST [RS_45] PartitionCols:_col0 Select Operator [SEL_44] (rows=5619 width=12) Output:["_col0","_col1"] Filter Operator [FIL_43] (rows=5619 width=12) predicate:((d_moy = 12) and d_date_sk is not null) TableScan [TS_6] (rows=73049 width=12) tpcds_bin_partitioned_orc_1000@date_dim,dt,Tbl:COMPLETE,Col:COMPLETE,Output:["d_date_sk","d_year","d_moy"] Dynamic Partitioning Event Operator [EVENT_48] (rows=2809 width=12) Group By Operator [GBY_47] (rows=2809 width=12) Output:["_col0"],keys:_col0 Select Operator [SEL_46] (rows=5619 width=12) Output:["_col0"] Please refer to the previous Select Operator [SEL_44] <-Map Join Operator [MAPJOIN_51] (rows=3978894 width=112) Conds:SEL_50._col0=RS_42._col0(Inner),HybridGraceHashJoin:true,Output:["_col1","_col2","_col4","_col5"] <-Map 4 [BROADCAST_EDGE] vectorized BROADCAST [RS_42] PartitionCols:_col0 Select Operator [SEL_41] (rows=434 width=111) Output:["_col0","_col1","_col2"] Filter Operator [FIL_40] (rows=434 width=111) predicate:((i_manufact_id = 436) and i_item_sk is not null) TableScan [TS_3] (rows=300000 width=111) tpcds_bin_partitioned_orc_1000@item,item,Tbl:COMPLETE,Col:COMPLETE,Output:["i_item_sk","i_brand_id","i_brand","i_manufact_id"] <-Select Operator [SEL_50] (rows=2750387156 width=11) Output:["_col0","_col1","_col2"] Filter Operator [FIL_49] (rows=2750387156 width=11) predicate:ss_item_sk is not null TableScan [TS_0] (rows=2750387156 width=11) tpcds_bin_partitioned_orc_1000@store_sales,store_sales,Tbl:COMPLETE,Col:COMPLETE,Output:["ss_item_sk","ss_ext_sales_price"] By setting hive.tez.dynamic.partition.pruning=true, we can see dynamic partitioning event operators. See more about this in HIVE-7826. New plan runs 31.35s. In the run time, dynamic partition event operator will send values needed to prune to the application master - where splits are generated and tasks are submitted. Using these values we can strip out any unneeded partitions dynamically, while the query is running.
  • 26.
    Page26 © HortonworksInc. 2011 – 2014. All Rights Reserved Performance debugging summary (TPC-DS Q3, 1TB) 0 20 40 60 80 100 120 140 160 180 Original Join re-order Join selection Dynamic partition pruning Queryexecutiontime(s) Query execution time Continuous improvement
  • 27.
    Page27 © HortonworksInc. 2011 – 2014. All Rights Reserved Integration with Apache Ambari 1. Type the query here 2. Click “explain” 3. explain plan will be shown
  • 28.
    Page28 © HortonworksInc. 2011 – 2014. All Rights Reserved  “set hive.tez.exec.print.summary=true;”  Get more insights on query performance Can be used along with Tez vertex runtime stats Runtime stats
  • 29.
    Page29 © HortonworksInc. 2011 – 2014. All Rights Reserved Summary • Show old style Hive explain plan is hard to read. • Verbose with too much redundant information, hard to follow how data flows, cost of operator is unclear • Compare with Postgres over a body of 500+ realistic SQL queries and identify the candidate improving points • Introduce new style Hive explain plan • Use a concrete example to help understand the explain: execution cost, join sequence and orchestration of the operator tree • Use the new Hive explain plan to performance debug TPC-DS Q3 • Show the improvement after join re-ordering, join selection, and dynamic partition pruning • Integration/interaction with other system/tools
  • 30.
    Page30 © HortonworksInc. 2011 – 2014. All Rights Reserved Future work -- Some gaps remain after HIVE-9780 • Put the real schema, table and column names in the explain plan, e.g., no more _col0 etc. • This will help users to understand the plan better • HIVE-8681: CBO: Column names are missing from join expression in Map join with CBO enabled • Get an equivalent of “EXPLAIN ANALYZE” – such as operator level runtime stats and warnings. • This will help users to find out the gap between estimated cost and real cost • HIVE-14362: Support explain analyze in Hive
  • 31.
    Page31 © HortonworksInc. 2011 – 2014. All Rights Reserved SHUFFLE [RS_55] PartitionCols:d_year, i_brand, i_brand_id Group By Operator [GBY_54] (rows=9/10 width=116) Output:["d_year","sum_agg","i_brand","i_brand_id"],aggregations:["sum(ss_ext_sales_price)"],keys:d_year, i_brand, i_brand_id Select Operator [SEL_53] (rows=306061/324651 width=112) Output:["d_year","i_brand","i_brand_id","ss_ext_sales_price"] Map Join Operator [MAPJOIN_52] (rows=306061/324651 width=112) Conds:MAPJOIN_51. ss_sold_date_sk=RS_45. d_date_sk(Inner),HybridGraceHashJoin:true,Output:["d_year","i_brand","i_brand_id","ss_ext_sales_price"] <-Map 5 [BROADCAST_EDGE] vectorized BROADCAST [RS_45] PartitionCols:d_date_sk Select Operator [SEL_44] (rows=5619/6034 width=12) Output:["d_date_sk","d_year"] Filter Operator [FIL_43] (rows=5619/6034 width=12) predicate:((d_moy = 12) and d_date_sk is not null) TableScan [TS_6] (rows=73049/73049 width=12) tpcds_bin_partitioned_orc_1000@date_dim,dt,Tbl:COMPLETE,Col:COMPLETE,Output:["d_date_sk","d_year","d_moy"] Dynamic Partitioning Event Operator [EVENT_48] (rows=2809 width=12) Group By Operator [GBY_47] (rows=2809/2324 width=12) Output:["d_date_sk"],keys:d_date_sk Select Operator [SEL_46] (rows=5619/6034 width=12) Output:["d_date_sk"] Please refer to the previous Select Operator [SEL_44] <-Map Join Operator [MAPJOIN_51] (rows=3978894/4202377 width=112) Conds:SEL_50.ss_item_sk=RS_42. i_item_sk(Inner),HybridGraceHashJoin:true,Output:["ss_ext_sales_price",” ss_sold_date_sk","i_brand","i_brand_id"] <-Map 4 [BROADCAST_EDGE] vectorized BROADCAST [RS_42] PartitionCols:i_item_sk Select Operator [SEL_41] (rows=434/453 width=111) Output:[” i_item_sk","i_brand_id","i_brand"] Filter Operator [FIL_40] (rows=434/453 width=111) predicate:((i_manufact_id = 436) and i_item_sk is not null) TableScan [TS_3] (rows=300000/300000 width=111) tpcds_bin_partitioned_orc_1000@item,item,Tbl:COMPLETE,Col:COMPLETE,Output:["i_item_sk","i_brand_id","i_brand","i_manufact_id"] <-Select Operator [SEL_50] (rows=2750387156/2750387156 width=11) Output:["ss_item_sk","ss_ext_sales_price","ss_sold_date_sk"] Filter Operator [FIL_49] (rows=2750387156/2750387156 width=11) predicate:ss_item_sk is not null TableScan [TS_0] (rows=2750387156/2750387156 width=11) tpcds_bin_partitioned_orc_1000@store_sales,store_sales,Tbl:COMPLETE,Col:COMPLETE,Output:["ss_item_sk","ss_ext_sales_price"]
  • 32.
    Page32 © HortonworksInc. 2011 – 2014. All Rights Reserved Acknowledgement • We thank all the anonymous reviewers’ votes to give us this opportunity to share our work. • Part of the slides are borrowed from or modified based on Carter Shanklin and Rajesh Balamohan’s slides. • We thank Gunther Hagleitner for all the support and inputs. • We thank Sapin Amin for setting up the testing cluster.
  • 33.
    Page33 © HortonworksInc. 2011 – 2014. All Rights Reserved Thank you! Questions?

Editor's Notes

  • #2 Hive contributors have striven to improve the capability of Hive in terms of both performance and functionality. We assert that understanding and analyzing Apache Hive query execution plan is crucial for performance debugging. In this talk, we study why Apache Hive’s query execution plan today are so difficult to analyze. We identify a set of pain points from our Apache Hive performance engineers, development engineers as well as real users/customers. We propose and show a new presentation data model that can well address the pain points. The three most critical parts of the presentation are (1) the estimated query execution cost, which is the planner's guess at how long it will take to run the query (measured in #rows); (2) the orchestration of the operator tree across consecutive M/R (Tez) jobs; and (3) integration and extension support with other presentation tools, e.g., Apache Ambari.
  • #4 We can see that Hive old style explain is quite verbose, is it necessary?
  • #5 We pick a real query out of the 500 queries.
  • #6 16 lines
  • #7 80 lines
  • #11 Although Reduce Output Operator is crucial as it defines the boundary between a map task and a reduce task, we are thinking how much information of the reduce output operator is.... SQL users care about more about relational operators rather than MR operators.
  • #13 We can also see more details about this join.
  • #16 It seems that Postgres sets up a good example for hive to improve on.
  • #21 So this is the basic introduction of the new style hive explain plan
  • #22 This query involves 3 tables.
  • #25 splits
  • #29 For Query 87
  • #32 The next version of Hive explain plan will look like this. We highlight the changes that we want to make in red color.
  • #33 We thank the audience for your attention.
  • #34 I am ready to take any questions.