This document discusses using Naive Bayesian methods for paragraph-level text classification in the Kannada language. It evaluates the performance of the Naive Bayesian and Naive Bayesian Multinomial models on a corpus of 1791 paragraphs from four categories (Commerce, Social Sciences, Natural Sciences, Aesthetics). Dimensionality reduction techniques like removing stop words and words with low term frequency are applied before classification. The results show that the Naive Bayesian Multinomial model outperforms the simple Naive Bayesian approach for paragraph classification in Kannada.