Embedded JavaScript Mikrocontroller programmieren… mit JavaScript?! Jens Siebert (@jens_siebert) WebMontag Kassel, 11. Juni 2018 https://www.slideshare.net/JensSiebert1
Mikrocontroller
Embedded Programmierung bisher…
Embedded Programmierung bisher…
Embedded Programmierung bisher… #define XTAL (12000000UL) /* Oscillator frequency */ #define OSC_CLK ( XTAL) /* Main oscillator frequency */ #define RTC_CLK ( 32000UL) /* RTC oscillator frequency */ #define IRC_OSC ( 4000000UL) /* Internal RC oscillator frequency */ /* F_cco0 = (2 * M * F_in) / N */ #define __M (((PLL0CFG_Val ) & 0x7FFF) + 1) #define __N (((PLL0CFG_Val >> 16) & 0x00FF) + 1) #define __FCCO(__F_IN) ((2ULL * __M * __F_IN) / __N) #define __CCLK_DIV (((CCLKCFG_Val ) & 0x00FF) + 1) /* Determine core clock frequency according to settings */ #if (PLL0_SETUP) #if ((CLKSRCSEL_Val & 0x03) == 1) #define __CORE_CLK (__FCCO(OSC_CLK) / __CCLK_DIV) #elif ((CLKSRCSEL_Val & 0x03) == 2) #define __CORE_CLK (__FCCO(RTC_CLK) / __CCLK_DIV) #else #define __CORE_CLK (__FCCO(IRC_OSC) / __CCLK_DIV) #endif #else #if ((CLKSRCSEL_Val & 0x03) == 1) #define __CORE_CLK (OSC_CLK / __CCLK_DIV) #elif ((CLKSRCSEL_Val & 0x03) == 2) #define __CORE_CLK (RTC_CLK / __CCLK_DIV) #else #define __CORE_CLK (IRC_OSC / __CCLK_DIV) #endif #endif uint32_t SystemCoreClock = __CORE_CLK;/*!< System Clock Frequency (Core Clock)*/ void SystemCoreClockUpdate (void) /* Get Core Clock Frequency */ { /* Determine clock frequency according to clock register values */ if (((LPC_SC->PLL0STAT >> 24) & 3) == 3) { /* If PLL0 enabled and connected */ switch (LPC_SC->CLKSRCSEL & 0x03) { case 0: /* Int. RC oscillator => PLL0 */ case 3: /* Reserved, default to Int. RC */ SystemCoreClock = (IRC_OSC * ((2ULL * ((LPC_SC->PLL0STAT & 0x7FFF) + 1))) / (((LPC_SC->PLL0STAT >> 16) & 0xFF) + 1) / ((LPC_SC->CCLKCFG & 0xFF)+ 1)); break; case 1: /* Main oscillator => PLL0 */ SystemCoreClock = (OSC_CLK * ((2ULL * ((LPC_SC->PLL0STAT & 0x7FFF) + 1))) / (((LPC_SC->PLL0STAT >> 16) & 0xFF) + 1) / ((LPC_SC->CCLKCFG & 0xFF)+ 1)); break; case 2: /* RTC oscillator => PLL0 */ SystemCoreClock = (RTC_CLK * ((2ULL * ((LPC_SC->PLL0STAT & 0x7FFF) + 1))) / (((LPC_SC->PLL0STAT >> 16) & 0xFF) + 1) / ((LPC_SC->CCLKCFG & 0xFF)+ 1)); break; } } else { switch (LPC_SC->CLKSRCSEL & 0x03) { case 0: /* Int. RC oscillator => PLL0 */ case 3: /* Reserved, default to Int. RC */ SystemCoreClock = IRC_OSC / ((LPC_SC->CCLKCFG & 0xFF)+ 1); break; case 1: /* Main oscillator => PLL0 */ SystemCoreClock = OSC_CLK / ((LPC_SC->CCLKCFG & 0xFF)+ 1); break; case 2: /* RTC oscillator => PLL0 */ SystemCoreClock = RTC_CLK / ((LPC_SC->CCLKCFG & 0xFF)+ 1); break; } } }
Embedded Programmierung bisher… #include <stdint.h> #include "LPC17xx.h“ #define CLOCK_SETUP 1 #define SCS_Val 0x00000020 #define CLKSRCSEL_Val 0x00000001 #define PLL0_SETUP 1 #ifdef MCB1700 # define PLL0CFG_Val 0x00050063 # define PLL1_SETUP 1 # define PLL1CFG_Val 0x00000023 # define CCLKCFG_Val 0x00000003 # define USBCLKCFG_Val 0x00000000 #else # define PLL0CFG_Val 0x0000000B # define PLL1_SETUP 0 # define PLL1CFG_Val 0x00000000 # define CCLKCFG_Val 0x00000002 # define USBCLKCFG_Val 0x00000005 #endif #define PCLKSEL0_Val 0x00000000 #define PCLKSEL1_Val 0x00000000 #define PCONP_Val 0x042887DE #define CLKOUTCFG_Val 0x00000000 #define FLASH_SETUP 1 #define FLASHCFG_Val 0x0000303A #define CHECK_RANGE(val, min, max) ((val < min) || (val > max)) #define CHECK_RSVD(val, mask) (val & mask) if (CHECK_RSVD((SCS_Val), ~0x00000030)) #error "SCS: Invalid values of reserved bits!" #endif #if (CHECK_RANGE((CLKSRCSEL_Val), 0, 2)) #error "CLKSRCSEL: Value out of range!" #endif #if (CHECK_RSVD((PLL0CFG_Val), ~0x00FF7FFF)) #error "PLL0CFG: Invalid values of reserved bits!" #endif #if (CHECK_RSVD((PLL1CFG_Val), ~0x0000007F)) #error "PLL1CFG: Invalid values of reserved bits!" #endif #if (PLL0_SETUP) /* if PLL0 is used */ #if (CCLKCFG_Val < 2) /* CCLKSEL must be greater then 1 */ #error "CCLKCFG: CCLKSEL must be greater then 1 if PLL0 is used!" #endif #endif #if (CHECK_RANGE((CCLKCFG_Val), 2, 255)) #error "CCLKCFG: Value out of range!" #endif #if (CHECK_RSVD((USBCLKCFG_Val), ~0x0000000F)) #error "USBCLKCFG: Invalid values of reserved bits!" #endif #if (CHECK_RSVD((PCLKSEL0_Val), 0x000C0C00)) #error "PCLKSEL0: Invalid values of reserved bits!" #endif #if (CHECK_RSVD((PCLKSEL1_Val), 0x03000300)) #error "PCLKSEL1: Invalid values of reserved bits!" #endif #if (CHECK_RSVD((PCONP_Val), 0x10100821)) #error "PCONP: Invalid values of reserved bits!" #endif #if (CHECK_RSVD((CLKOUTCFG_Val), ~0x000001FF)) #error "CLKOUTCFG: Invalid values of reserved bits!" #endif /* Flash Accelerator Configuration ------------------------*/ #if (CHECK_RSVD((FLASHCFG_Val), ~0x0000F07F)) #error "FLASHCFG: Invalid values of reserved bits!" #endif
Embedded Programmierung bisher… void SystemInit (void) { #if (CLOCK_SETUP) /* Clock Setup */ LPC_SC->SCS = SCS_Val; if (LPC_SC->SCS & (1 << 5)) { /* If Main Oscillator is enabled */ while ((LPC_SC->SCS & (1<<6)) == 0);/* Wait for Oscillator to be ready */ } LPC_SC->CCLKCFG = CCLKCFG_Val; /* Setup Clock Divider */ /* Periphral clock must be selected before PLL0 enabling and connecting * - according errata.lpc1768-16.March.2010 - */ LPC_SC->PCLKSEL0 = PCLKSEL0_Val; /* Peripheral Clock Selection */ LPC_SC->PCLKSEL1 = PCLKSEL1_Val; #if (PLL0_SETUP) LPC_SC->CLKSRCSEL = CLKSRCSEL_Val; /* Select Clock Source for PLL0 */ LPC_SC->PLL0CFG = PLL0CFG_Val; /* configure PLL0 */ LPC_SC->PLL0FEED = 0xAA; LPC_SC->PLL0FEED = 0x55; LPC_SC->PLL0CON = 0x01; /* PLL0 Enable */ LPC_SC->PLL0FEED = 0xAA; LPC_SC->PLL0FEED = 0x55; while (!(LPC_SC->PLL0STAT & (1<<26)));/* Wait for PLOCK0 */ LPC_SC->PLL0CON = 0x03; /* PLL0 Enable & Connect */ LPC_SC->PLL0FEED = 0xAA; LPC_SC->PLL0FEED = 0x55; while (!(LPC_SC->PLL0STAT & ((1<<25) | (1<<24))));/* Wait for PLLC0_STAT & PLLE0_STAT */ #endif #if (PLL1_SETUP) LPC_SC->PLL1CFG = PLL1CFG_Val; LPC_SC->PLL1FEED = 0xAA; LPC_SC->PLL1FEED = 0x55; LPC_SC->PLL1CON = 0x01; /* PLL1 Enable */ LPC_SC->PLL1FEED = 0xAA; LPC_SC->PLL1FEED = 0x55; while (!(LPC_SC->PLL1STAT & (1<<10)));/* Wait for PLOCK1 */ LPC_SC->PLL1CON = 0x03; /* PLL1 Enable & Connect */ LPC_SC->PLL1FEED = 0xAA; LPC_SC->PLL1FEED = 0x55; while (!(LPC_SC->PLL1STAT & ((1<< 9) | (1<< 8))));/* Wait for PLLC1_STAT & PLLE1_STAT */ #else LPC_SC->USBCLKCFG = USBCLKCFG_Val; /* Setup USB Clock Divider */ #endif LPC_SC->PCONP = PCONP_Val; /* Power Control for Peripherals */ LPC_SC->CLKOUTCFG = CLKOUTCFG_Val; /* Clock Output Configuration */ #endif #if (FLASH_SETUP == 1) /* Flash Accelerator Setup */ LPC_SC->FLASHCFG = (LPC_SC->FLASHCFG & ~0x0000F000) | FLASHCFG_Val; #endif }
Embedded Programmierung bisher… - Volle Kontrolle über Hardware - Teure (Entwicklungs-)Hardware - Spezialwissen - Für Hobbyanwender kaum geeignet
Die Revolution: Arduino!
Die Revolution: Arduino! - Preiswerte Hardware - Viel (preiswerte) Peripherie inkl. Bibliotheken verfügbar - Für Hobbyanwender/Quereinsteiger/Rapid Prototyping gut geeignet - Kein Debugger 
Und JavaScript?
Espruino
Espruino - Preiswerte Hardware - Viel (preiswerte) Peripherie inkl. Bibliotheken verfügbar - Für Hobbyanwender/Quereinsteiger/Rapid Prototyping gut geeignet - Debugger verfügbar 
Demo Time!
Beispiel: Temperatur function onTimer() { // Messwert vom Temperatursensor auslesen var t = E.getTemperature().toFixed(1); // Backbuffer loeschen g.clear(); // Kleine Schriftart für die Titelzeile auswaehlen g.setFontBitmap(); // Titelzeile zeichnen g.drawString("Temperature:"); // Grosse Schriftart für den Messwert auswaehlen g.setFontVector(40); // Messwert zentriert zeichnen, 10px Abstand vom oberen Rand g.drawString(t, (g.getWidth() - g.stringWidth(t))/2, 10); // Backbuffer auf Display darstellen g.flip(); } // Messwert und Display-Inhalt alle zwei Sekunden aktualisieren setInterval(onTimer,2000); // Initiale Darstellung des Messwertes onTimer();
Beispiel: Luftfeuchtigkeit // I2C-Schnittstelle konfigurieren I2C1.setup( {scl: A5, sda: A4 } ); // HTU21D-Modul laden und über I2C-Schnittstelle verbinden var htu = require('HTU21D').connect( I2C1 ); function onTimer() { // Messwert vom Luftfeuchtesensor auslesen var t = htu.readHumidity().toFixed(1); // Backbuffer loeschen g.clear(); // Kleine Schriftart für die Titelzeile auswaehlen g.setFontBitmap(); // Titelzeile zeichnen g.drawString("Humidity:"); // Grosse Schriftart für den Messwert auswaehlen g.setFontVector(40); // Messwert zentriert zeichnen, 10px Abstand vom oberen Rand g.drawString(t, (g.getWidth() - g.stringWidth(t))/2, 10); // Backbuffer auf Display darstellen g.flip(); } // Messwert und Display-Inhalt alle zwei Sekunden aktualisieren setInterval(onTimer,2000); // Initiale Darstellung des Messwertes onTimer();
Beispiel: Bluetooth LE // I2C-Schnittstelle konfigurieren I2C1.setup( {scl: A5, sda: A4 } ); // HTU21D-Modul laden und über I2C-Schnittstelle verbinden var htu = require('HTU21D').connect( I2C1 ); // Verfuegbare BLE Services und Charakteristiken bekannt machen NRF.setServices({ // Envrionmental Sensing Service konfigurieren 0x181A: { // Temperatur Charakteristik konfigurieren 0x2A6E: { readable: true, notify: true, writeable: false, value: new Int16Array([E.getTemperature() * 100]).buffer }, // Luftfeuchte Charakteristik konfigurieren 0x2A6F: { readable: true, notify: true, writeable: false, value: new Uint16Array([htu.readHumidity() * 100]).buffer } } // Envrionmental Sensing Service bekannt machen }, {advertise: ['0x181A']}); // Messwerte erfassen und Benachrichtigungen versenden function onTimer() { NRF.updateServices({ // Envrionmental Sensing Service aktualisieren 0x181A: { // Temperatur Charakteristik aktualisieren 0x2A6E: { value: new Int16Array([E.getTemperature() * 100]).buffer, notify: true }, // Luftfeuchte Charakteristik aktualisieren 0x2A6F: { value: new Uint16Array([htu.readHumidity() * 100]).buffer, notify: true } } }); } NRF.on('connect', function(addr) { // Messwert aktualisieren und uebermitteln setInterval(onTimer, 2000); // Initiale Uebermittlung des Messwertes onTimer(); });
Beispiel: Bluetooth LE
Literatur
Vielen Dank! https://www.espruino.com https://www.espruino.com/Pixl.js Tessel: https://www.tessel.io Neonious: https://www.neonious.com Slides: https://www.slideshare.net/JensSiebert1 Twitter: @jens_siebert

Embedded JavaScript

  • 1.
    Embedded JavaScript Mikrocontroller programmieren…mit JavaScript?! Jens Siebert (@jens_siebert) WebMontag Kassel, 11. Juni 2018 https://www.slideshare.net/JensSiebert1
  • 2.
  • 3.
  • 4.
  • 5.
    Embedded Programmierung bisher… #defineXTAL (12000000UL) /* Oscillator frequency */ #define OSC_CLK ( XTAL) /* Main oscillator frequency */ #define RTC_CLK ( 32000UL) /* RTC oscillator frequency */ #define IRC_OSC ( 4000000UL) /* Internal RC oscillator frequency */ /* F_cco0 = (2 * M * F_in) / N */ #define __M (((PLL0CFG_Val ) & 0x7FFF) + 1) #define __N (((PLL0CFG_Val >> 16) & 0x00FF) + 1) #define __FCCO(__F_IN) ((2ULL * __M * __F_IN) / __N) #define __CCLK_DIV (((CCLKCFG_Val ) & 0x00FF) + 1) /* Determine core clock frequency according to settings */ #if (PLL0_SETUP) #if ((CLKSRCSEL_Val & 0x03) == 1) #define __CORE_CLK (__FCCO(OSC_CLK) / __CCLK_DIV) #elif ((CLKSRCSEL_Val & 0x03) == 2) #define __CORE_CLK (__FCCO(RTC_CLK) / __CCLK_DIV) #else #define __CORE_CLK (__FCCO(IRC_OSC) / __CCLK_DIV) #endif #else #if ((CLKSRCSEL_Val & 0x03) == 1) #define __CORE_CLK (OSC_CLK / __CCLK_DIV) #elif ((CLKSRCSEL_Val & 0x03) == 2) #define __CORE_CLK (RTC_CLK / __CCLK_DIV) #else #define __CORE_CLK (IRC_OSC / __CCLK_DIV) #endif #endif uint32_t SystemCoreClock = __CORE_CLK;/*!< System Clock Frequency (Core Clock)*/ void SystemCoreClockUpdate (void) /* Get Core Clock Frequency */ { /* Determine clock frequency according to clock register values */ if (((LPC_SC->PLL0STAT >> 24) & 3) == 3) { /* If PLL0 enabled and connected */ switch (LPC_SC->CLKSRCSEL & 0x03) { case 0: /* Int. RC oscillator => PLL0 */ case 3: /* Reserved, default to Int. RC */ SystemCoreClock = (IRC_OSC * ((2ULL * ((LPC_SC->PLL0STAT & 0x7FFF) + 1))) / (((LPC_SC->PLL0STAT >> 16) & 0xFF) + 1) / ((LPC_SC->CCLKCFG & 0xFF)+ 1)); break; case 1: /* Main oscillator => PLL0 */ SystemCoreClock = (OSC_CLK * ((2ULL * ((LPC_SC->PLL0STAT & 0x7FFF) + 1))) / (((LPC_SC->PLL0STAT >> 16) & 0xFF) + 1) / ((LPC_SC->CCLKCFG & 0xFF)+ 1)); break; case 2: /* RTC oscillator => PLL0 */ SystemCoreClock = (RTC_CLK * ((2ULL * ((LPC_SC->PLL0STAT & 0x7FFF) + 1))) / (((LPC_SC->PLL0STAT >> 16) & 0xFF) + 1) / ((LPC_SC->CCLKCFG & 0xFF)+ 1)); break; } } else { switch (LPC_SC->CLKSRCSEL & 0x03) { case 0: /* Int. RC oscillator => PLL0 */ case 3: /* Reserved, default to Int. RC */ SystemCoreClock = IRC_OSC / ((LPC_SC->CCLKCFG & 0xFF)+ 1); break; case 1: /* Main oscillator => PLL0 */ SystemCoreClock = OSC_CLK / ((LPC_SC->CCLKCFG & 0xFF)+ 1); break; case 2: /* RTC oscillator => PLL0 */ SystemCoreClock = RTC_CLK / ((LPC_SC->CCLKCFG & 0xFF)+ 1); break; } } }
  • 6.
    Embedded Programmierung bisher… #include<stdint.h> #include "LPC17xx.h“ #define CLOCK_SETUP 1 #define SCS_Val 0x00000020 #define CLKSRCSEL_Val 0x00000001 #define PLL0_SETUP 1 #ifdef MCB1700 # define PLL0CFG_Val 0x00050063 # define PLL1_SETUP 1 # define PLL1CFG_Val 0x00000023 # define CCLKCFG_Val 0x00000003 # define USBCLKCFG_Val 0x00000000 #else # define PLL0CFG_Val 0x0000000B # define PLL1_SETUP 0 # define PLL1CFG_Val 0x00000000 # define CCLKCFG_Val 0x00000002 # define USBCLKCFG_Val 0x00000005 #endif #define PCLKSEL0_Val 0x00000000 #define PCLKSEL1_Val 0x00000000 #define PCONP_Val 0x042887DE #define CLKOUTCFG_Val 0x00000000 #define FLASH_SETUP 1 #define FLASHCFG_Val 0x0000303A #define CHECK_RANGE(val, min, max) ((val < min) || (val > max)) #define CHECK_RSVD(val, mask) (val & mask) if (CHECK_RSVD((SCS_Val), ~0x00000030)) #error "SCS: Invalid values of reserved bits!" #endif #if (CHECK_RANGE((CLKSRCSEL_Val), 0, 2)) #error "CLKSRCSEL: Value out of range!" #endif #if (CHECK_RSVD((PLL0CFG_Val), ~0x00FF7FFF)) #error "PLL0CFG: Invalid values of reserved bits!" #endif #if (CHECK_RSVD((PLL1CFG_Val), ~0x0000007F)) #error "PLL1CFG: Invalid values of reserved bits!" #endif #if (PLL0_SETUP) /* if PLL0 is used */ #if (CCLKCFG_Val < 2) /* CCLKSEL must be greater then 1 */ #error "CCLKCFG: CCLKSEL must be greater then 1 if PLL0 is used!" #endif #endif #if (CHECK_RANGE((CCLKCFG_Val), 2, 255)) #error "CCLKCFG: Value out of range!" #endif #if (CHECK_RSVD((USBCLKCFG_Val), ~0x0000000F)) #error "USBCLKCFG: Invalid values of reserved bits!" #endif #if (CHECK_RSVD((PCLKSEL0_Val), 0x000C0C00)) #error "PCLKSEL0: Invalid values of reserved bits!" #endif #if (CHECK_RSVD((PCLKSEL1_Val), 0x03000300)) #error "PCLKSEL1: Invalid values of reserved bits!" #endif #if (CHECK_RSVD((PCONP_Val), 0x10100821)) #error "PCONP: Invalid values of reserved bits!" #endif #if (CHECK_RSVD((CLKOUTCFG_Val), ~0x000001FF)) #error "CLKOUTCFG: Invalid values of reserved bits!" #endif /* Flash Accelerator Configuration ------------------------*/ #if (CHECK_RSVD((FLASHCFG_Val), ~0x0000F07F)) #error "FLASHCFG: Invalid values of reserved bits!" #endif
  • 7.
    Embedded Programmierung bisher… voidSystemInit (void) { #if (CLOCK_SETUP) /* Clock Setup */ LPC_SC->SCS = SCS_Val; if (LPC_SC->SCS & (1 << 5)) { /* If Main Oscillator is enabled */ while ((LPC_SC->SCS & (1<<6)) == 0);/* Wait for Oscillator to be ready */ } LPC_SC->CCLKCFG = CCLKCFG_Val; /* Setup Clock Divider */ /* Periphral clock must be selected before PLL0 enabling and connecting * - according errata.lpc1768-16.March.2010 - */ LPC_SC->PCLKSEL0 = PCLKSEL0_Val; /* Peripheral Clock Selection */ LPC_SC->PCLKSEL1 = PCLKSEL1_Val; #if (PLL0_SETUP) LPC_SC->CLKSRCSEL = CLKSRCSEL_Val; /* Select Clock Source for PLL0 */ LPC_SC->PLL0CFG = PLL0CFG_Val; /* configure PLL0 */ LPC_SC->PLL0FEED = 0xAA; LPC_SC->PLL0FEED = 0x55; LPC_SC->PLL0CON = 0x01; /* PLL0 Enable */ LPC_SC->PLL0FEED = 0xAA; LPC_SC->PLL0FEED = 0x55; while (!(LPC_SC->PLL0STAT & (1<<26)));/* Wait for PLOCK0 */ LPC_SC->PLL0CON = 0x03; /* PLL0 Enable & Connect */ LPC_SC->PLL0FEED = 0xAA; LPC_SC->PLL0FEED = 0x55; while (!(LPC_SC->PLL0STAT & ((1<<25) | (1<<24))));/* Wait for PLLC0_STAT & PLLE0_STAT */ #endif #if (PLL1_SETUP) LPC_SC->PLL1CFG = PLL1CFG_Val; LPC_SC->PLL1FEED = 0xAA; LPC_SC->PLL1FEED = 0x55; LPC_SC->PLL1CON = 0x01; /* PLL1 Enable */ LPC_SC->PLL1FEED = 0xAA; LPC_SC->PLL1FEED = 0x55; while (!(LPC_SC->PLL1STAT & (1<<10)));/* Wait for PLOCK1 */ LPC_SC->PLL1CON = 0x03; /* PLL1 Enable & Connect */ LPC_SC->PLL1FEED = 0xAA; LPC_SC->PLL1FEED = 0x55; while (!(LPC_SC->PLL1STAT & ((1<< 9) | (1<< 8))));/* Wait for PLLC1_STAT & PLLE1_STAT */ #else LPC_SC->USBCLKCFG = USBCLKCFG_Val; /* Setup USB Clock Divider */ #endif LPC_SC->PCONP = PCONP_Val; /* Power Control for Peripherals */ LPC_SC->CLKOUTCFG = CLKOUTCFG_Val; /* Clock Output Configuration */ #endif #if (FLASH_SETUP == 1) /* Flash Accelerator Setup */ LPC_SC->FLASHCFG = (LPC_SC->FLASHCFG & ~0x0000F000) | FLASHCFG_Val; #endif }
  • 8.
    Embedded Programmierung bisher… -Volle Kontrolle über Hardware - Teure (Entwicklungs-)Hardware - Spezialwissen - Für Hobbyanwender kaum geeignet
  • 9.
  • 10.
    Die Revolution: Arduino! -Preiswerte Hardware - Viel (preiswerte) Peripherie inkl. Bibliotheken verfügbar - Für Hobbyanwender/Quereinsteiger/Rapid Prototyping gut geeignet - Kein Debugger 
  • 11.
  • 12.
  • 13.
    Espruino - Preiswerte Hardware -Viel (preiswerte) Peripherie inkl. Bibliotheken verfügbar - Für Hobbyanwender/Quereinsteiger/Rapid Prototyping gut geeignet - Debugger verfügbar 
  • 14.
  • 15.
    Beispiel: Temperatur function onTimer(){ // Messwert vom Temperatursensor auslesen var t = E.getTemperature().toFixed(1); // Backbuffer loeschen g.clear(); // Kleine Schriftart für die Titelzeile auswaehlen g.setFontBitmap(); // Titelzeile zeichnen g.drawString("Temperature:"); // Grosse Schriftart für den Messwert auswaehlen g.setFontVector(40); // Messwert zentriert zeichnen, 10px Abstand vom oberen Rand g.drawString(t, (g.getWidth() - g.stringWidth(t))/2, 10); // Backbuffer auf Display darstellen g.flip(); } // Messwert und Display-Inhalt alle zwei Sekunden aktualisieren setInterval(onTimer,2000); // Initiale Darstellung des Messwertes onTimer();
  • 16.
    Beispiel: Luftfeuchtigkeit // I2C-Schnittstellekonfigurieren I2C1.setup( {scl: A5, sda: A4 } ); // HTU21D-Modul laden und über I2C-Schnittstelle verbinden var htu = require('HTU21D').connect( I2C1 ); function onTimer() { // Messwert vom Luftfeuchtesensor auslesen var t = htu.readHumidity().toFixed(1); // Backbuffer loeschen g.clear(); // Kleine Schriftart für die Titelzeile auswaehlen g.setFontBitmap(); // Titelzeile zeichnen g.drawString("Humidity:"); // Grosse Schriftart für den Messwert auswaehlen g.setFontVector(40); // Messwert zentriert zeichnen, 10px Abstand vom oberen Rand g.drawString(t, (g.getWidth() - g.stringWidth(t))/2, 10); // Backbuffer auf Display darstellen g.flip(); } // Messwert und Display-Inhalt alle zwei Sekunden aktualisieren setInterval(onTimer,2000); // Initiale Darstellung des Messwertes onTimer();
  • 17.
    Beispiel: Bluetooth LE //I2C-Schnittstelle konfigurieren I2C1.setup( {scl: A5, sda: A4 } ); // HTU21D-Modul laden und über I2C-Schnittstelle verbinden var htu = require('HTU21D').connect( I2C1 ); // Verfuegbare BLE Services und Charakteristiken bekannt machen NRF.setServices({ // Envrionmental Sensing Service konfigurieren 0x181A: { // Temperatur Charakteristik konfigurieren 0x2A6E: { readable: true, notify: true, writeable: false, value: new Int16Array([E.getTemperature() * 100]).buffer }, // Luftfeuchte Charakteristik konfigurieren 0x2A6F: { readable: true, notify: true, writeable: false, value: new Uint16Array([htu.readHumidity() * 100]).buffer } } // Envrionmental Sensing Service bekannt machen }, {advertise: ['0x181A']}); // Messwerte erfassen und Benachrichtigungen versenden function onTimer() { NRF.updateServices({ // Envrionmental Sensing Service aktualisieren 0x181A: { // Temperatur Charakteristik aktualisieren 0x2A6E: { value: new Int16Array([E.getTemperature() * 100]).buffer, notify: true }, // Luftfeuchte Charakteristik aktualisieren 0x2A6F: { value: new Uint16Array([htu.readHumidity() * 100]).buffer, notify: true } } }); } NRF.on('connect', function(addr) { // Messwert aktualisieren und uebermitteln setInterval(onTimer, 2000); // Initiale Uebermittlung des Messwertes onTimer(); });
  • 18.
  • 19.
  • 20.
    Vielen Dank! https://www.espruino.com https://www.espruino.com/Pixl.js Tessel: https://www.tessel.io Neonious:https://www.neonious.com Slides: https://www.slideshare.net/JensSiebert1 Twitter: @jens_siebert

Editor's Notes

  • #3 ARM 32-bit Cortex-M4 CPU with FPU, up to 84 MHz, up to 512 Kbytes of Flash memory, up to 96 Kbytes of SRAM, 146 μA/MHz (Run), 2.4 μA (Standby)