This document presents a new approach for content-based image retrieval that combines color, texture, and a binary tree structure to describe images and their features. Color histograms in HSV color space and wavelet texture features are extracted as low-level features. A binary tree partitions each image into regions based on color and represents higher-level spatial relationships. The performance of the proposed system is evaluated on a subset of the COREL image database and compared to the SIMPLIcity image retrieval system. Experimental results show the proposed system has better retrieval performance than SIMPLIcity in some categories and comparable performance in others.