This document describes a content-based image retrieval system that extracts shape and texture features from images. It uses the HSV color space and wavelet transform for feature extraction. Color features are extracted by quantizing the H, S, and V components of HSV into unequal intervals based on human color perception. Texture features are extracted using wavelet transforms. The color and texture features are then combined to form a feature vector for each image. During retrieval, the similarity between a query image and images in the database is measured using the Euclidean distance between their feature vectors. The results show that retrieving images using HSV color features provides more accurate results and faster retrieval times compared to using RGB color features.