Introduction • • Thispresentation covers essential intermediate Python topics. • • We'll explore data visualization, numerical computing, concurrency, and networking. • • Libraries covered: Matplotlib, NumPy, Threading, and Sockets.
3.
Matplotlib: Data Visualization •• Matplotlib is used for creating static, animated, and interactive visualizations. • • Common plots: Line graphs, bar charts, histograms, scatter plots. • • Key functions: plt.plot(), plt.bar(), plt.hist(), plt.scatter(). • • Customization options for labels, colors, and styles.
4.
Matplotlib Example Code •```python • import matplotlib.pyplot as plt • x = [1, 2, 3, 4] • y = [10, 20, 25, 30] • plt.plot(x, y, marker='o', linestyle='-') • plt.xlabel('X-axis') • plt.ylabel('Y-axis') • plt.title('Sample Line Plot') • plt.show()
5.
NumPy: Numerical Computing •• NumPy is a powerful library for numerical operations. • • Provides support for multi-dimensional arrays and matrices. • • Optimized for performance compared to Python lists. • • Common functions: np.array(), np.linspace(), np.mean(), np.std().
Threading: Concurrency inPython • • The threading module allows parallel execution of tasks. • • Useful for I/O-bound operations but not CPU-intensive tasks. • • Key functions: threading.Thread(), start(), join(). • • Avoids blocking operations by running multiple tasks concurrently.
8.
Threading Example Code •```python • import threading • import time • def print_numbers(): • for i in range(5): • print(i) • time.sleep(1)
9.
Sockets: Networking inPython • • The socket module allows network communication between computers. • • Supports TCP and UDP protocols. • • Common functions: socket(), bind(), listen(), accept(), send(), recv(). • • Used in building servers, clients, and peer- to-peer applications.