Bigdata based Fraud Detection 김민경 daengky@naver.com 2015.04.09
2 •Outline • Intorduction • Bigdata • Machine Learning • Fraud Detection • Solutions
3 •Outline • Intorduction • Bigdata • Machine Learning • Fraud Detection • Solutions
4 • O2O Platform Introduction 온라인 기업의 오프라인 장악을 위해 고안되었으나 현재는 오프라인과 온라인이 서로 인터랙션하는 플랫폼 으로 진행....
5 • FinTech Introduction 결제의 편의성에서 출발......
6 •Introduction Market Share 핀테크와 O2O플랫폼은 편의성 확보를 통한 고객 확보와 시장을 선점하기 위한 전쟁
7 •Introduction 인증 간편하게 ID와 패스워드 한번으로 결제 공인인증서 발급하여 쇼핑하는 것이 가능한가? 아이핀을 발급하여 쇼핑하는 것이 가능한가?
8 •Introduction Trade-Off 보안성 편의성 보안성과 편의성은 서로 트레이드 오프(Trade-Off) 관계
9 •Introduction Success 보안성 편의성 두마리 토끼를 잡아야 성공할 수 있다.
10 •Introduction Motive 인터넷 전문은행? • 인터넷과 모바일을 통해서 예금 수신·이체·대출·펀드투자 등 금융 서비스를 제공하는 은행 • 특징 : 점포 없이 저비용 구조로 운영하면서 시중은행 보다 저렴한 수수료와 낮은 대출 금리 제공. • 산업자본의 지분 참여 30% 이상 허용 • 대기업군(61개) 제한 : 삼성, 현대자동차 등 공정거래 위원회로 부터 상호 출자 제한을 받는 자산 5조원 이상
11 •Introduction Motive • 불편한 금융 보안장치와 프로세스 • 보안카드 OTP • 책임은 누구 • 금융보안은 자율적으로 처리하는 것이 대세 • 금융회사 책임 범위 강화 • 금융보호업무 재위탁 금지, 단 금융위 허용시 예외 • 징벌적 과징금- 50억원이하 • 벌칙강화 -10년이하 징역, 1억원이하 벌금 • 과태료 -신설, 안정성 확보의무 불이행시 5천만원이하 • 의무적 보고 – CISO의 매월 정보보안점검 내용 보고.
12 •Introduction 신제윤 금융위원장은 금융보안을 위해 모든 금융권이 이상거 래탐지시스템(FDS) 구축을 완료해야 한다고 촉구했다. "핀테크 활성화 방안을 추진하기 위해서 반드시 전제돼야 할 사항은 보안의 중요성"이라며 "정보보안이 확보되지 않 은 서비스는 결국 사상누각이 될 것"이라고 우려했다. 그는 핀테크(Fintech) 추진 방안과 관련해서는 "오프라인 위주의 금융제도 개편을 통해 핀테크 기술이 금융에 자연스 럽게 접목될 수 있도록 지원할 것"이라며 "전자금융업종 규 율을 재설계토록 하겠다"고 밝혔다. Motive
13 •Outline • Intorduction • Bigdata • Machine Learning • Fraud Detection • Solutions
14 • Bigdata Ecosystem Bigdata • 빅데이터의 의의 데이터 양이 방대할 뿐만 아니라 복잡해져서 전통적인 데이터 프로세싱으로 는 처리하기 어려워서 고안되 대용량 병렬 컴퓨팅 기술 • 빅데이터 처리 기술 이러한 복잡하고 방대한 데이터를 병렬 프로세싱을 통해서 효율적으로 처 리하는 기술 • 빅데이터 처리 과정 수집-저장-처리-분석-표현 수집-처리-분석-표현-저장 • 빅데이터 분석의 의의 복잡하고 방대한 데이터를 대용량 병렬 컴퓨팅 기술에 기반하여 기 계학습이나 확률 통계적 기법을 이용한 분석 기술
15 • Bigdata Ecosystem Open Source Bigdata Ecosystem • Query (NOSQL) : Cassandra, HBase, MongoDB and more • Query (SQL) : Hive, Stinger, Impala, Presto, Shark • Advanced Analytic : Hadoop, Spark,H2O • Real time : Storm, Samza, S4, Spark Streaming Bigdata
16 • Bigdata Ecosystem Bigdata
17 • Veracity Bigdata Problems Bigdata Value Meaning
18 • Bigdata Streaming Bigdata
19 • Analytics Problems Bigdata DATA ACQUISITION DATA ANALYSIS DATA STORAGE RESULT Stream pipeline
20 • Stream Problems Bigdata Big (Volume) Complex (Veriety) Speed (Velocity)
21 • Lambda Architecture Bigdata
22 • Lambda Architecture Bigdata
23 • Lambda Architecture Bigdata
24 • Lambda Architecture Bigdata
25 • Lambda Architecture Bigdata
26 • Lambda Architecture Bigdata
27 • Lambda Architecture Bigdata
28 • Lambda Architecture Bigdata •All data entering the system is dispatched to both the batch layer and the speed layer for processing. •The batch layer has two functions: (i) managing the master dataset (an immutable, append-only set of raw data), and (ii) to pre-compute the batch views. •The serving layer indexes the batch views so that they can be queried in low-latency, ad-hoc way. •The speed layer compensates for the high latency of updates to the serving layer and deals with recent data only. •Any incoming query can be answered by merging results from batch views and real-time views.
29 • Lambda Architecture Bigdata
30 • In-Stream Processing Bigdata
31 • Seldon Infrastructure Bigdata •Real-Time Layer : responsible for handling the live predictive API requests. •Storage Layer : various types of storage used by other components. •Near time/Offline Layer:components that run compute intensive or non-realtime jobs. •Stats layer : components to monitor and analyze the running system.
32 • Pulsar Architecture Bigdata Pulsar Deployment Architecture
33 • Pulsar Architecture Bigdata
34 • Pulsar Architecture Bigdata The Pulsar pipeline includes the following components: • Collector: Ingests events through a Rest end point • Sessionizer: Sessionizes the events, maintaining the session state and generating marker events • Distributor: Filters and mutates events to different consumers; acts as an event router • Metrics calculator: Calculates metrics by various dimensions and persists them in the metrics store • Replay: Replays the failed events on other stages • ConfigApp: Configures dynamic provisioning for the whole pipeline
35 • Pulsar Architecture Bigdata • • Complex Event Processing: SQL on stream data • • Custom sub-stream creation: Filtering and Mutation • • In Memory Aggregation: Multi Dimensional counting
36 • Pulsar Architecture Bigdata
37 • Realtime Ecosystem Bigdata
38 • Realtime Ecosystem Bigdata
39 •Outline • Intorduction • Bigdata • Machine Learning • Fraud Detection • Solutions
40 • What is ? Machine Learnig Data로 부터 출발.... • 기계(Machine) + Learning (학습) • 기계(컴퓨터)에게 데이터를 이용하여 학습하는 방법을 가르치는 것. Teach computer how to learn from data 따라서 Data가 교재이다.
41 • ML Types Machine Learnig • Supervised learning : 지도학습 • Data의 종류를 알고 있을 때(Category, Labeled) • ex: spam mail • Unsupervised : 비지도학습 • Data의 종류는 모르지만 패턴을 알고 싶을 때 • SNS, Twitter • Semi-supervised learning : 지도학습 + 비지도학습 • Reinforcement learning : 강화학습 • 잘못된 것을 다시 피드백 • Evolutionary learning : 진화학습(GA, AIS) • Meta Learning : Landmark of data for classifier
42 • Lifecycle on Realtime Machine Learnig ML Modeling ML Deploy ML Optimizer New Data Decision Making Alert Anomaly Store Hadoop DFS/NoSQl/Hive
43 • Genetic algorithm Abnormal Behavior Machine Learnig
44 • Association Rule Mining Machine Learnig
45 • Finite State Automata (FSA) Since the tests in can be grouped, the states can represent the several tests being performed at the same time. For example, T34 means that T3 and T4 can be done simultaneously Machine Learnig
46 • Clustering Machine Learnig
47 • Hidden Markov Sequence Based Algorithm •Certain fraudulent activities may not be detectable with instance based algorithms •small amount of money, instance based algorithms will fail to detect the fraud Machine Learnig
48 • Decision Tree Profiling? Machine Learnig
49 • Support Vector Machine Machine Learnig
50 • Neural Network Single Layer Feed Forward Model Machine Learnig
51 • anti-k nearest neighbor Outlier Detection Machine Learnig
52 • Comparison of Three Algorithms Machine Learnig
53 •Outline • Intorduction • Bigdata • Machine Learning • Fraud Detection • Solutions
54 • Banking • 트래픽 Fraud Detection 1일트랜잭션 1일로그 날짜 총건수 트랜젝션수 20,000,000 200,000,000 7일 1,400,000,000건 140,000,000건 21일 4,200,000,000건 420,000,000건 30일 6,000,000,000건 600,000,000건 60일 12,000,000,000건 1,200,000,000건 90일 18,000,000,000건 1,800,000,000건 120일 24,000,000,000건 2,400,000,000건 150일 30,000,000,000건 3,000,000,000건 180일 36,000,000,000건 3,600,000,000건 360일 72,000,000,000건 7,200,000,000건
55 •Fraud Detection Credit card data (70-80 variables per transaction): • Transaction ID • Transaction type • Date and time of transaction (to nearest second) • Amount • Currency • Local currency amount • Merchant category • Card issuer ID • ATM ID • POS type • Cheque account prefix • Savings account prefix • Acquiring institution ID • Transaction authorisation code • Online authorisation performed • New card • Transaction exceeds floor limit • Number of times chip has been accessed • Merchant city name • Chip terminal capability • Chip card verification result Card
56 • Fraud Detection Basics Fraud Detection Speed is the key !!!• - many transactions - billions - algorithms must be efficient - mixed variable types (generally not text, image) - large number of variables - incomprehensible variables, irrelevant variables - different misclassification costs - many ways of committing fraud - unbalanced class sizes (c. 0.1% transactions fraudulent) - delay in labelling - mislabelled classes - random transaction arrival times - (reactive) population drift - Maintain a sliding buffer of the last billion transactions in RAM (fast memory) - Organize the transactions in such a way that some queries could be executed very fast - Develop some clever algorithms that operate on this data structure - Will it work??? Yes, it will !!! Yes, it does …
57 • Fraud Detection Basics Fraud Detection Challenge: real-time detection! • Monitor in real time all POS/ATM transactions • Detect unusual patterns and block compromised cards as quickly as possible • Ideally: block compromised cards before fraud is discovered! • A big question: can we do it ??? • Some numbers: • 3,000,000,000 transactions per year • up to 15,000,000 transactions per day • up to 400 transactions per second (peak hours) • 100,000,000 cards
58 • Fraud Detection Basics Fraud Detection •Self Healing •Multi datacenter failovers •State management •Shutdown Orchestration •Dynamic Partitioning •Elastic Clusters •Dynamic Flow Routing •Dynamic Topology Changes
59 • Fraud Detection Basics Fraud Detection –SQL like language for specifying processing rules –Analysis over rolling and tumbling windows of time –Filtering and Joining streams –Grouping and Ordering output –For routing events between stages and between clusters –Event Mutation –Correlation –Patterns
60 • Fraud Detection Basics Fraud Detection •Rolling window aggregation over long time windows (hours or days) •Session store scaling to 1 million insert/update per sec •Dynamic Joins with graphs and RDBMS tables •Auto scaling based on load sensing •Hot deployment of Java source code
61 • Fraud Detection Basics • Outlier Detection • detecting data points that don’t follow the trends and patters in the data • rule base detection • anomaly detection • Two approaches for treating input • focus on instance of data point • focus on sequence of data points • Three kinds of algorithms • building a model out of data • using data directly. • immunse system base on temporal data • Real time fraud detection • feasible with model based approach • A model is built with batch processing of training data • A real time stream processor uses the model and makes predictions in real time Fraud Detection
62 • Economy Imperative • Not worth spending $200m to stop $20m fraud • The Pareto principle • fthe first 50% of fraud is easy to stop • next 25% takes the same effort • next 12.5% takes the same effort • Resources available for fraud detection are always limited • around 3% of police resources go on fraud ? • this will not significantly increase • If we cannot outspend the fraudsters we must out-think them Fraud Detection
63 • Types of Anomaly Fraud Detection
64 •Fraud Detection AIS are adaptive systems inspired by theoretical immunology and observed immune functions, principles and models, which are applied to complex problem domains •Immune system needs to be able to differentiate between self and non-self cells •may result in cell death therefore • Some kind of positive selection(Clonal Selection) • Some kind of negative selection Aritifical Immune Systems
65 •Fraud Detection 무과립성 백혈구(無顆粒性 白血球, agranulocyte)의 일종으로 면역 기능 관여하며 전체 백혈구 중에서도 30%를 차지한다. •T세포(T cell) •보조 T세포(Helper T cell) •세포독성 T세포(killer T cell) •억제 T세포(suppressor T cell) •B세포(B cell) •NK세포(Natural killer cell, NK cell) Lymphocyte(림프구)
66 •Fraud Detection B 세포(B細胞, B cell)는 림프구 중 항체를 생산하는 세포 B cell
67 •Fraud Detection T세포(T細胞, T cell) 또는 T림프구(T lymphocyte)는 항원 특이적인 적 응 면역을 주관하는 림프구의 하나이다. 가슴샘(Thymus)에서 성숙되기 때문 에 첫글자를 따서 T세포라는 이름이 붙었다. 전체 림프구 중 약 4분의 3이 T 세포 T세포는 아직 항원을 만나지 못한 미접촉 T세포와, 항원을 만나 성숙한 효과 T 세포(보조 T세포, 세포독성 T세포, 자연살상 T세포), 그리고 기억 T세포로 분류 T cell
68 •Fraud Detection each antibody can recognize a single antigen Antibody, Antigen
69 •Fraud Detection Biological Immune System
70 • Danger Theory •Proposed by Polly Matzinger, around 1995 •Traditional self/non-self theory doesn’t always match observations •Immune system always responds to non-self •Immune system always tolerates self •Antigen-presenting cell(APC):T-cell activation by APCs •Danger theory relates innate and adaptive immune systems •Tissues induce tolerance towards themselves •Tissues protect themselves and select class of response Fraud Detection
71 • •Tissues induce tolerance by •Lymphocytes receive 2 signals •antigen/lymphocyte binding •antigen is properly presented by APC •Signal 1 WITHOUT signal 2 : lymphocyte death •Tissues protect themselves •Alarm Signals activate APCs •Alarm signals come from •Cells that die unnaturally •Cells under stress •APCs activate lymphocytes •Tissues dictate response type •Alarm signals may convey information Danger Theory Fraud Detection
72 • Danger Theory Fraud Detection
73 • Artificial Immune Systems Fraud Detection •Vectors Ab = {Ab1, Ab2, ..., AbL} Ag = {Ag1, Ag2, ..., AgL} •Real-valued shape-space •Integer shape-space •Binary shape-space •Symbolic shape-space D= √∑i =1 L (Abi −Ag i )2 Artificial Immune System
74 •Fraud Detection Meta-Frameworks Artificial Immune System
75 •Fraud Detection Hybrid Immune Learning
76 •Fraud Detection For natural immune system, all cells of body are categorized as two types of self and non-self. The immune process is to detect non-self from cells. use the Positive Selection Algorithm (PSA) to perform the non-self detection for recognizing the malicious executable. Non-self Detection Principle
77 •Fraud Detection Network Security
78 •Fraud Detection Network Security Architecture of anomaly detection system.
79 •Fraud Detection Intrusion Detection Systems
80 •Outline • Intorduction • Bigdata • Machine Learning • Fraud Detection • Solutions
81 • Neural Stream Architecture Solutions Modeling Fork New data stream Alert
82 • Neural Stream Architecture Solutions Fork New data stream Batch Modeling Online Compute Online Learning Convergence Alert
83 • Neural Stream Architecture Solutions Agent TimeReducer Daily Weekly Monthly TwoMonth ThreeMonth FourMonth FiveMonth SixMonth SevenMonth EightMonth NineMonth TenMonth TwoWeek ThreeWeek TwoDay ThreeDay FourDay FiveDay SixDay FourWeek MetaParser TimeStore Long Transaction Memory BlackList SeccueCode POSEntry
84 • Neural Stream Architecture Solutions Velocity Volume Variety Veracity Neural Stream Big Data On-line Learning Neural Architecture Machine Learning Platform
85 • Neural Stream FDS Solutions
86 •Solutions • Storage • hadoop • HDFS: Distributed File System(DFS) • MapReduce : parallel processing • Algorithms • on-line learning (Immune System and Genetic Algorithms) • batch model • direct data • Stream • Neural stream • Decentralize decision process • Cell base detection • Network for Artificial Immune Systems • Lambda architecture, Pulsar can’t use on-line learning Neural Stream
87 • Classical rule-based approach • Always “too late”: • New fraud pattern is “invented” by criminals • Cardholders lose money and complain • Banks investigate complains and try to understand the new pattern • A new rule is implemented a few weeks later • Expensive to build (knowledge intensive) • Difficult to maintain: • Many rules • The situation is dynamically changing, so frequently • rules have to be added, modified, or removed … Solutions
88 •Solutions • Every bank user gets a vector of parameters that describe his/her behavior: an “average-behavior” profile • The system constantly compares this “long-term” profile with the recent behavior of cardholder • Transactions that do not fit into bank user’s profile are flagged as suspicious (or are blocked) • Profiles are updated with every single transaction, so the system constantly adopts to (slow and small) changes in bank user’ behavior A system based on profiles
89 •Solutions Solve the problems
Q&A Thanks

Bigdata based fraud detection

  • 1.
    Bigdata based FraudDetection 김민경 daengky@naver.com 2015.04.09
  • 2.
    2 •Outline • Intorduction • Bigdata •Machine Learning • Fraud Detection • Solutions
  • 3.
    3 •Outline • Intorduction • Bigdata •Machine Learning • Fraud Detection • Solutions
  • 4.
    4 • O2O Platform Introduction 온라인기업의 오프라인 장악을 위해 고안되었으나 현재는 오프라인과 온라인이 서로 인터랙션하는 플랫폼 으로 진행....
  • 5.
  • 6.
    6 •Introduction Market Share 핀테크와 O2O플랫폼은편의성 확보를 통한 고객 확보와 시장을 선점하기 위한 전쟁
  • 7.
    7 •Introduction 인증 간편하게 ID와 패스워드한번으로 결제 공인인증서 발급하여 쇼핑하는 것이 가능한가? 아이핀을 발급하여 쇼핑하는 것이 가능한가?
  • 8.
  • 9.
  • 10.
    10 •Introduction Motive 인터넷 전문은행? • 인터넷과모바일을 통해서 예금 수신·이체·대출·펀드투자 등 금융 서비스를 제공하는 은행 • 특징 : 점포 없이 저비용 구조로 운영하면서 시중은행 보다 저렴한 수수료와 낮은 대출 금리 제공. • 산업자본의 지분 참여 30% 이상 허용 • 대기업군(61개) 제한 : 삼성, 현대자동차 등 공정거래 위원회로 부터 상호 출자 제한을 받는 자산 5조원 이상
  • 11.
    11 •Introduction Motive • 불편한 금융보안장치와 프로세스 • 보안카드 OTP • 책임은 누구 • 금융보안은 자율적으로 처리하는 것이 대세 • 금융회사 책임 범위 강화 • 금융보호업무 재위탁 금지, 단 금융위 허용시 예외 • 징벌적 과징금- 50억원이하 • 벌칙강화 -10년이하 징역, 1억원이하 벌금 • 과태료 -신설, 안정성 확보의무 불이행시 5천만원이하 • 의무적 보고 – CISO의 매월 정보보안점검 내용 보고.
  • 12.
    12 •Introduction 신제윤 금융위원장은 금융보안을위해 모든 금융권이 이상거 래탐지시스템(FDS) 구축을 완료해야 한다고 촉구했다. "핀테크 활성화 방안을 추진하기 위해서 반드시 전제돼야 할 사항은 보안의 중요성"이라며 "정보보안이 확보되지 않 은 서비스는 결국 사상누각이 될 것"이라고 우려했다. 그는 핀테크(Fintech) 추진 방안과 관련해서는 "오프라인 위주의 금융제도 개편을 통해 핀테크 기술이 금융에 자연스 럽게 접목될 수 있도록 지원할 것"이라며 "전자금융업종 규 율을 재설계토록 하겠다"고 밝혔다. Motive
  • 13.
    13 •Outline • Intorduction • Bigdata •Machine Learning • Fraud Detection • Solutions
  • 14.
    14 • Bigdata Ecosystem Bigdata • 빅데이터의의의 데이터 양이 방대할 뿐만 아니라 복잡해져서 전통적인 데이터 프로세싱으로 는 처리하기 어려워서 고안되 대용량 병렬 컴퓨팅 기술 • 빅데이터 처리 기술 이러한 복잡하고 방대한 데이터를 병렬 프로세싱을 통해서 효율적으로 처 리하는 기술 • 빅데이터 처리 과정 수집-저장-처리-분석-표현 수집-처리-분석-표현-저장 • 빅데이터 분석의 의의 복잡하고 방대한 데이터를 대용량 병렬 컴퓨팅 기술에 기반하여 기 계학습이나 확률 통계적 기법을 이용한 분석 기술
  • 15.
    15 • Bigdata Ecosystem Open SourceBigdata Ecosystem • Query (NOSQL) : Cassandra, HBase, MongoDB and more • Query (SQL) : Hive, Stinger, Impala, Presto, Shark • Advanced Analytic : Hadoop, Spark,H2O • Real time : Storm, Samza, S4, Spark Streaming Bigdata
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
    28 • Lambda Architecture Bigdata •All dataentering the system is dispatched to both the batch layer and the speed layer for processing. •The batch layer has two functions: (i) managing the master dataset (an immutable, append-only set of raw data), and (ii) to pre-compute the batch views. •The serving layer indexes the batch views so that they can be queried in low-latency, ad-hoc way. •The speed layer compensates for the high latency of updates to the serving layer and deals with recent data only. •Any incoming query can be answered by merging results from batch views and real-time views.
  • 29.
  • 30.
  • 31.
    31 • Seldon Infrastructure Bigdata •Real-Time Layer: responsible for handling the live predictive API requests. •Storage Layer : various types of storage used by other components. •Near time/Offline Layer:components that run compute intensive or non-realtime jobs. •Stats layer : components to monitor and analyze the running system.
  • 32.
  • 33.
  • 34.
    34 • Pulsar Architecture Bigdata The Pulsarpipeline includes the following components: • Collector: Ingests events through a Rest end point • Sessionizer: Sessionizes the events, maintaining the session state and generating marker events • Distributor: Filters and mutates events to different consumers; acts as an event router • Metrics calculator: Calculates metrics by various dimensions and persists them in the metrics store • Replay: Replays the failed events on other stages • ConfigApp: Configures dynamic provisioning for the whole pipeline
  • 35.
    35 • Pulsar Architecture Bigdata • •Complex Event Processing: SQL on stream data • • Custom sub-stream creation: Filtering and Mutation • • In Memory Aggregation: Multi Dimensional counting
  • 36.
  • 37.
  • 38.
  • 39.
    39 •Outline • Intorduction • Bigdata •Machine Learning • Fraud Detection • Solutions
  • 40.
    40 • What is ? MachineLearnig Data로 부터 출발.... • 기계(Machine) + Learning (학습) • 기계(컴퓨터)에게 데이터를 이용하여 학습하는 방법을 가르치는 것. Teach computer how to learn from data 따라서 Data가 교재이다.
  • 41.
    41 • ML Types Machine Learnig •Supervised learning : 지도학습 • Data의 종류를 알고 있을 때(Category, Labeled) • ex: spam mail • Unsupervised : 비지도학습 • Data의 종류는 모르지만 패턴을 알고 싶을 때 • SNS, Twitter • Semi-supervised learning : 지도학습 + 비지도학습 • Reinforcement learning : 강화학습 • 잘못된 것을 다시 피드백 • Evolutionary learning : 진화학습(GA, AIS) • Meta Learning : Landmark of data for classifier
  • 42.
    42 • Lifecycle on Realtime MachineLearnig ML Modeling ML Deploy ML Optimizer New Data Decision Making Alert Anomaly Store Hadoop DFS/NoSQl/Hive
  • 43.
  • 44.
  • 45.
    45 • Finite StateAutomata (FSA) Since the tests in can be grouped, the states can represent the several tests being performed at the same time. For example, T34 means that T3 and T4 can be done simultaneously Machine Learnig
  • 46.
  • 47.
    47 • Hidden Markov SequenceBased Algorithm •Certain fraudulent activities may not be detectable with instance based algorithms •small amount of money, instance based algorithms will fail to detect the fraud Machine Learnig
  • 48.
  • 49.
  • 50.
    50 • Neural Network SingleLayer Feed Forward Model Machine Learnig
  • 51.
    51 • anti-k nearest neighbor OutlierDetection Machine Learnig
  • 52.
    52 • Comparison of ThreeAlgorithms Machine Learnig
  • 53.
    53 •Outline • Intorduction • Bigdata •Machine Learning • Fraud Detection • Solutions
  • 54.
    54 • Banking • 트래픽 FraudDetection 1일트랜잭션 1일로그 날짜 총건수 트랜젝션수 20,000,000 200,000,000 7일 1,400,000,000건 140,000,000건 21일 4,200,000,000건 420,000,000건 30일 6,000,000,000건 600,000,000건 60일 12,000,000,000건 1,200,000,000건 90일 18,000,000,000건 1,800,000,000건 120일 24,000,000,000건 2,400,000,000건 150일 30,000,000,000건 3,000,000,000건 180일 36,000,000,000건 3,600,000,000건 360일 72,000,000,000건 7,200,000,000건
  • 55.
    55 •Fraud Detection Credit carddata (70-80 variables per transaction): • Transaction ID • Transaction type • Date and time of transaction (to nearest second) • Amount • Currency • Local currency amount • Merchant category • Card issuer ID • ATM ID • POS type • Cheque account prefix • Savings account prefix • Acquiring institution ID • Transaction authorisation code • Online authorisation performed • New card • Transaction exceeds floor limit • Number of times chip has been accessed • Merchant city name • Chip terminal capability • Chip card verification result Card
  • 56.
    56 • Fraud Detection Basics FraudDetection Speed is the key !!!• - many transactions - billions - algorithms must be efficient - mixed variable types (generally not text, image) - large number of variables - incomprehensible variables, irrelevant variables - different misclassification costs - many ways of committing fraud - unbalanced class sizes (c. 0.1% transactions fraudulent) - delay in labelling - mislabelled classes - random transaction arrival times - (reactive) population drift - Maintain a sliding buffer of the last billion transactions in RAM (fast memory) - Organize the transactions in such a way that some queries could be executed very fast - Develop some clever algorithms that operate on this data structure - Will it work??? Yes, it will !!! Yes, it does …
  • 57.
    57 • Fraud Detection Basics FraudDetection Challenge: real-time detection! • Monitor in real time all POS/ATM transactions • Detect unusual patterns and block compromised cards as quickly as possible • Ideally: block compromised cards before fraud is discovered! • A big question: can we do it ??? • Some numbers: • 3,000,000,000 transactions per year • up to 15,000,000 transactions per day • up to 400 transactions per second (peak hours) • 100,000,000 cards
  • 58.
    58 • Fraud Detection Basics FraudDetection •Self Healing •Multi datacenter failovers •State management •Shutdown Orchestration •Dynamic Partitioning •Elastic Clusters •Dynamic Flow Routing •Dynamic Topology Changes
  • 59.
    59 • Fraud Detection Basics FraudDetection –SQL like language for specifying processing rules –Analysis over rolling and tumbling windows of time –Filtering and Joining streams –Grouping and Ordering output –For routing events between stages and between clusters –Event Mutation –Correlation –Patterns
  • 60.
    60 • Fraud Detection Basics FraudDetection •Rolling window aggregation over long time windows (hours or days) •Session store scaling to 1 million insert/update per sec •Dynamic Joins with graphs and RDBMS tables •Auto scaling based on load sensing •Hot deployment of Java source code
  • 61.
    61 • Fraud Detection Basics •Outlier Detection • detecting data points that don’t follow the trends and patters in the data • rule base detection • anomaly detection • Two approaches for treating input • focus on instance of data point • focus on sequence of data points • Three kinds of algorithms • building a model out of data • using data directly. • immunse system base on temporal data • Real time fraud detection • feasible with model based approach • A model is built with batch processing of training data • A real time stream processor uses the model and makes predictions in real time Fraud Detection
  • 62.
    62 • Economy Imperative • Notworth spending $200m to stop $20m fraud • The Pareto principle • fthe first 50% of fraud is easy to stop • next 25% takes the same effort • next 12.5% takes the same effort • Resources available for fraud detection are always limited • around 3% of police resources go on fraud ? • this will not significantly increase • If we cannot outspend the fraudsters we must out-think them Fraud Detection
  • 63.
  • 64.
    64 •Fraud Detection AIS areadaptive systems inspired by theoretical immunology and observed immune functions, principles and models, which are applied to complex problem domains •Immune system needs to be able to differentiate between self and non-self cells •may result in cell death therefore • Some kind of positive selection(Clonal Selection) • Some kind of negative selection Aritifical Immune Systems
  • 65.
    65 •Fraud Detection 무과립성 백혈구(無顆粒性白血球, agranulocyte)의 일종으로 면역 기능 관여하며 전체 백혈구 중에서도 30%를 차지한다. •T세포(T cell) •보조 T세포(Helper T cell) •세포독성 T세포(killer T cell) •억제 T세포(suppressor T cell) •B세포(B cell) •NK세포(Natural killer cell, NK cell) Lymphocyte(림프구)
  • 66.
    66 •Fraud Detection B 세포(B細胞,B cell)는 림프구 중 항체를 생산하는 세포 B cell
  • 67.
    67 •Fraud Detection T세포(T細胞, Tcell) 또는 T림프구(T lymphocyte)는 항원 특이적인 적 응 면역을 주관하는 림프구의 하나이다. 가슴샘(Thymus)에서 성숙되기 때문 에 첫글자를 따서 T세포라는 이름이 붙었다. 전체 림프구 중 약 4분의 3이 T 세포 T세포는 아직 항원을 만나지 못한 미접촉 T세포와, 항원을 만나 성숙한 효과 T 세포(보조 T세포, 세포독성 T세포, 자연살상 T세포), 그리고 기억 T세포로 분류 T cell
  • 68.
    68 •Fraud Detection each antibodycan recognize a single antigen Antibody, Antigen
  • 69.
  • 70.
    70 • Danger Theory •Proposedby Polly Matzinger, around 1995 •Traditional self/non-self theory doesn’t always match observations •Immune system always responds to non-self •Immune system always tolerates self •Antigen-presenting cell(APC):T-cell activation by APCs •Danger theory relates innate and adaptive immune systems •Tissues induce tolerance towards themselves •Tissues protect themselves and select class of response Fraud Detection
  • 71.
    71 • •Tissues induce toleranceby •Lymphocytes receive 2 signals •antigen/lymphocyte binding •antigen is properly presented by APC •Signal 1 WITHOUT signal 2 : lymphocyte death •Tissues protect themselves •Alarm Signals activate APCs •Alarm signals come from •Cells that die unnaturally •Cells under stress •APCs activate lymphocytes •Tissues dictate response type •Alarm signals may convey information Danger Theory Fraud Detection
  • 72.
  • 73.
    73 • Artificial Immune Systems FraudDetection •Vectors Ab = {Ab1, Ab2, ..., AbL} Ag = {Ag1, Ag2, ..., AgL} •Real-valued shape-space •Integer shape-space •Binary shape-space •Symbolic shape-space D= √∑i =1 L (Abi −Ag i )2 Artificial Immune System
  • 74.
  • 75.
  • 76.
    76 •Fraud Detection For naturalimmune system, all cells of body are categorized as two types of self and non-self. The immune process is to detect non-self from cells. use the Positive Selection Algorithm (PSA) to perform the non-self detection for recognizing the malicious executable. Non-self Detection Principle
  • 77.
  • 78.
    78 •Fraud Detection NetworkSecurity Architecture of anomaly detection system.
  • 79.
  • 80.
    80 •Outline • Intorduction • Bigdata •Machine Learning • Fraud Detection • Solutions
  • 81.
    81 • Neural StreamArchitecture Solutions Modeling Fork New data stream Alert
  • 82.
    82 • Neural StreamArchitecture Solutions Fork New data stream Batch Modeling Online Compute Online Learning Convergence Alert
  • 83.
    83 • Neural StreamArchitecture Solutions Agent TimeReducer Daily Weekly Monthly TwoMonth ThreeMonth FourMonth FiveMonth SixMonth SevenMonth EightMonth NineMonth TenMonth TwoWeek ThreeWeek TwoDay ThreeDay FourDay FiveDay SixDay FourWeek MetaParser TimeStore Long Transaction Memory BlackList SeccueCode POSEntry
  • 84.
    84 • Neural StreamArchitecture Solutions Velocity Volume Variety Veracity Neural Stream Big Data On-line Learning Neural Architecture Machine Learning Platform
  • 85.
    85 • Neural StreamFDS Solutions
  • 86.
    86 •Solutions • Storage • hadoop •HDFS: Distributed File System(DFS) • MapReduce : parallel processing • Algorithms • on-line learning (Immune System and Genetic Algorithms) • batch model • direct data • Stream • Neural stream • Decentralize decision process • Cell base detection • Network for Artificial Immune Systems • Lambda architecture, Pulsar can’t use on-line learning Neural Stream
  • 87.
    87 • Classical rule-based approach •Always “too late”: • New fraud pattern is “invented” by criminals • Cardholders lose money and complain • Banks investigate complains and try to understand the new pattern • A new rule is implemented a few weeks later • Expensive to build (knowledge intensive) • Difficult to maintain: • Many rules • The situation is dynamically changing, so frequently • rules have to be added, modified, or removed … Solutions
  • 88.
    88 •Solutions • Every bankuser gets a vector of parameters that describe his/her behavior: an “average-behavior” profile • The system constantly compares this “long-term” profile with the recent behavior of cardholder • Transactions that do not fit into bank user’s profile are flagged as suspicious (or are blocked) • Profiles are updated with every single transaction, so the system constantly adopts to (slow and small) changes in bank user’ behavior A system based on profiles
  • 89.
  • 90.