Big Data Visualization using Apache Spark and Zeppelin Prajod Vettiyattil, Software Architect, Wipro https://in.linkedin.com/in/prajod @prajods
Agenda • Big Data and Ecosystem tools • Apache Spark • Apache Zeppelin • Data Visualization • Combining Spark and Zeppelin 2
BIG DATA AND ECOSYSTEM TOOLS
Big Data • Data size beyond systems capability – Terabyte, Petabyte, Exabyte • Storage – Commodity servers, RAID, SAN • Processing – In reasonable response time – A challenge here 4
Server Tradition processing tools • Move what ? – the data to the code or – the code to the data 5 Data Server move data to code move code to data Code
Traditional processing tools • Traditional tools – RDBMS, DWH, BI – High cost – Difficult to scale beyond certain data size • price/performance skew • data variety not supported 6
Map-Reduce and NoSQL • Hadoop toolset – Free and open source – Commodity hardware – Scales to exabytes(1018), maybe even more • Not only SQL – Storage and query processing only – Complements Hadoop toolset – Volume, velocity and variety 7
All is well ? • Hadoop was designed for batch processing • Disk based processing: slow • Many tools to enhance Hadoop’s capabilities – Distributed cache, Haloop, Hive, HBase • Not for interactive and iterative 8
TOWARDS SINGULARITY
What is singularity ? 10 0 1000 2000 3000 4000 5000 6000 7000 8000 1 2 3 4 5 6 7 AIcapacity Decade Decade vs AI capacity Point of singularity
Technological singularity • When AI capability exceeds Human capacity • AI or non-AI singularity • 2045: http://en.wikipedia.org/wiki/Ray_Kurzweil – The predicted year 11
APACHE SPARK
History of Spark 13 Spark 1.3.1 released 2015 March Spark 1.0.0 released. 100TB sort achieved in 23 mins 2014 Spark donated to Apache Software Foundation 2013 Spark becomes open source. 2010 Spark created by Matei Zaharia at UC Berkeley 2009
Contributors in Spark • Yahoo • Intel • UC Berkeley • … • 50+ organizations 14
Hadoop and Spark • Spark complements the Hadoop ecosystem • Replaces: Hadoop MR • Spark integrates with – HDFS – Hive – HBase – YARN 15
Other big data tools • Spark also integrates with – Kafka – ZeroMQ – Cassandra – Mesos 16
Programming Spark • Java • Scala • Python • R 17
Spark toolset 18 Apache Spark Spark SQL Spark Streaming MLlib GraphX Spark R Blink DB Spark Cassandra Tachyon
What is Spark for ? 19 Batch Interactive Streaming
The main difference: speed • RAM access vs Disk access – RAM access is 100,000 times faster ! 20 https://gist.github.com/hellerbarde/2843375
Lambda Architecture pattern • Used for Lambda architecture implementation – Batch layer – Speed layer – Serving layer 21 Batch Layer Speed Layer Serving Layer Data Input Data consumers
Worker Node Executor Deployment Architecture 22 Master Node Executor Task Cache TaskTask Worker Node ExecutorExecutorExecutor HDFS Data Node HDFS Data Node TaskTaskTask Cache Spark’s Cluster Manager Spark Driver HDFS Name Node
Core features of Spark • Rich API • RDD: Resilient Distributed Datasets • DAG based execution • Data caching • Strong ecosystem tool support 23
Sample code in scala • Find the top 100,000 Wikipedia pages by page views • Log file format: code, title, num_hits • enPages.map(l => l.split(" ")) .map(l => (l(1), l(2).toInt)) .reduceByKey(_+_, 200) .filter(x => x._2 > 100000) .map(x => (x._2, x._1)) .collect .foreach(println) 24
APACHE ZEPPELIN
Interactive data analytics • For Spark and Flink • Web front end • At the back end, it connects to – SQL systems(Eg: Hive) – Spark – Flink 26
Deployment Architecture 27 Spark / Flink / Hive Zeppelin daemon Web browser 1 Web browser 2 Web browser 3 Web Server Local Interpreters Optional Remote Interpreters
Notebook • Is where you do your data analysis • Web UI REPL with pluggable interpreters • Interpreters – Scala, Python, Angular, SparkSQL, Markdown and Shell 28
Notebook:view 29
User Interface features • Markdown • Dynamic HTML generation • Dynamic chart generation • Screen sharing via websockets 30
SQL Interpreter • SQL shell – Query spark data using SQL queries – Return normal text, HTML or chart type results 31
Scala interpreter for Spark • Similar to the Spark shell • Upload your data into Spark • Query the data sets(RDDs) in your Spark server • Execute map-reduce tasks • Actions on RDD • Transformations on RDD 32
DATA VISUALIZATION
Visualization tools 34 Source: http://selection.datavisualization.ch/
D3 Visualizations 35 Source: https://github.com/mbostock/d3/wiki/Gallery
The need for visualization 36 Big Data Do something to data User gets comprehensible data
Tools for Data Presentation Architecture 37 1.Identify 2.Locate 3.Manipulate 4.Format 5.Present A data analysis tool/toolset would support:
COMBINING SPARK AND ZEPPELIN
Spark and Zeppelin 39 Spark Worker Node Spark Master Node Spark Worker Node Zeppelin daemon Web browser 1 Web browser 2 Web browser 3 Web Server Local Interpreters Remote Interpreters
Zeppelin views: Table from SQL 40
Zeppelin views: Table from SQL 41 %sql select age, count(1) from bank where marital="${marital=single,single|divorced|married}" group by age order by age
Zeppelin views: Pie chart from SQL 42
Zeppelin views: Bar chart from SQL 43
Zeppelin views: Angular 44
Share variables: MVVM • Between Scala/Python/Spark and Angular • Observe scala variables from angular 45 Scala-Spark Angular x = “foo” x = “bar” Zeppelin
Zeppelin views: Angular-scala binding 46
Screen sharing using Zeppelin • Share your graphical reports – Live sharing – Get the share URL from zeppelin and share with others – Uses websockets • Embed live reports in web pages 47
FUTURE
Spark and Zeppelin • Spark – Berkeley Data Analytics Stack – More source and sinks; SparkSQL • Zeppelin – Notebooks for • Machine Learning using Spark • GraphX and Mllib – Additional interpreters – Better graphics, steaming views – Report persistence – More report templates – Better angular integration 49
SUMMARY
Summary • Spark and tools • The need for visualization • The role of Zeppelin • Zeppelin – Spark integration 51
@prajods

Big Data visualization with Apache Spark and Zeppelin