The document discusses anomaly detection techniques using deep one-class classifiers and generative adversarial networks (GANs). It proposes using an autoencoder to extract features from normal images, training a GAN on those features to model the distribution, and using a one-class support vector machine (SVM) to determine if new images are within the normal distribution. The method detects and localizes anomalies by generating a binary mask for abnormal regions. It also discusses Gaussian mixture models and the expectation-maximization algorithm for modeling multiple distributions in data.