取引所価格のバイナリコードの分析(第2回):BIP39への変換とGPTモデルの記述
価格の動きを解読し続けます。では、バイナリ価格コードをBIP39に変換して得られる「市場辞典」の言語分析はどうでしょうか。本記事では、データ分析における革新的なアプローチを掘り下げ、現代の自然言語処理技術が市場言語にどのように応用できるかを考察します。
時間進化移動アルゴリズム(TETA)
これは私自身のアルゴリズムです。本記事では、並行宇宙や時間の流れの概念に着想を得た「時間進化移動アルゴリズム(TETA: Time Evolution Travel Algorithm)」を紹介します。本アルゴリズムの基本的な考え方は、従来の意味でのタイムトラベルは不可能であるものの、異なる現実に至る一連の出来事の順序を選択することができるという点にあります。
強化学習と弱者淘汰を組み合わせた進化型取引アルゴリズム(ETARE)
この記事では、進化アルゴリズムと深層強化学習を組み合わせた、外国為替取引のための革新的な取引アルゴリズムを紹介します。このアルゴリズムは、非効率な個体を絶滅させるメカニズムを使用して取引戦略を最適化します。
Pythonの価格変動離散化手法
Python + MQL5を使用した価格離散化手法を見ていきます。本記事では、バー生成に関する幅広い手法を実装したPythonライブラリの開発経験についご紹介します。クラシックなボリュームバーやレンジバーから、よりエキゾチックな練行足やカギ足といった手法までを網羅します。スリーラインブレイクローソク足やレンジバーの統計分析をおこないながら、価格を離散的に表現する新たな方法を探っていきます。
循環単為生殖アルゴリズム(CPA)
本記事では、新しい集団最適化アルゴリズムである循環単為生殖アルゴリズム(CPA: Cyclic Parthenogenesis Algorithm)を取り上げます。本アルゴリズムは、アブラムシ特有の繁殖戦略に着想を得ています。CPAは、単為生殖と有性生殖という2つの繁殖メカニズムを組み合わせるほか、個体群のコロニー構造を活用し、コロニー間の移動も可能にしています。このアルゴリズムの主要な特徴は、異なる繁殖戦略間の適応的な切り替えと、飛行メカニズムを通じたコロニー間の情報交換システムです。
アルゴリズム取引におけるニューロシンボリックシステム:シンボリックルールとニューラルネットワークを組み合わせる
本記事では、古典的なテクニカル分析とニューラルネットワークを組み合わせたハイブリッド型取引システムの開発経験について解説します。システムのアーキテクチャを、基本的なパターン分析やニューラルネットワーク構造から、実際の売買判断に至るメカニズムまで詳細に分析し、実際のコードや実務的な知見も共有します。
学習中にニューロンを活性化する関数:高速収束の鍵は?
本記事では、ニューラルネットワークの学習における異なる活性化関数と最適化アルゴリズムの相互作用に関する研究を紹介します。特に、古典的なADAMとその集団版であるADAMmを比較し、振動するACONやSnake関数を含む幅広い活性化関数での動作を検証します。最小構成のMLPアーキテクチャ(1-1-1)と単一の学習例を用いることで、活性化関数が最適化に与える影響を他の要因から切り離して観察します。本記事では、活性化関数の境界を利用したネットワーク重みの管理と重み反射機構を提案し、学習における飽和や停滞の問題を回避できることを示します。
量子コンピューティングと取引:価格予測への新たなアプローチ
本記事では、量子コンピューティングを用いて金融市場における価格変動を予測するための革新的なアプローチについて説明します。主な焦点は、量子位相推定(QPE: Quantum Phase Estimation)アルゴリズムを適用して価格パターンのプロトタイプを見つけることであり、これによりトレーダーは市場データの分析を大幅に高速化できるようになります。
取引所価格のバイナリコードの分析(第1回):テクニカル分析の新たな視点
本記事では、価格変動をバイナリコードに変換するという新しい視点からテクニカル分析にアプローチします。筆者は、シンプルな値動きから複雑な市場パターンに至るまで、あらゆる市場行動を「0」と「1」のシーケンスとして符号化できることを示します。
市場シミュレーション(第3回):パフォーマンスの問題
時には一歩下がってから前進する必要があります。本記事では、マウスインジケーターおよびChart Tradeインジケーターが正常に動作するようにするために必要なすべての変更についてご紹介します。さらにおまけとして、今後広く使用される他のヘッダーファイルにおける変更についても触れます。
プライスアクション分析ツールキットの開発(第32回):Python Candlestick Recognitionエンジン(II) - Ta-Libを用いた検出
本記事では、Pythonでローソク足パターンを手動で検出していた前回の方法から一歩進み、TA-Libを活用した自動検出手法へと移行します。TA-Libは、60種類以上の異なるローソク足パターンを認識できる強力なテクニカル分析ライブラリです。これらのパターンは、市場の反転やトレンド継続の可能性を読み取る上で有用なインサイトを提供します。ぜひ最後までお読みください。
ビッグバンビッグクランチ(BBBC)アルゴリズム
本記事では、ビッグバンビッグクランチ(BBBC)法について紹介します。本手法は2つの主要な段階から構成されます。すなわち、ランダムな点を周期的に生成する段階と、それらを最適解へ圧縮する段階です。本アプローチは探索と精緻化を組み合わせることで、段階的により良好な解を導出し、新たな最適化の可能性を開くことが可能です。
市場シミュレーション(第2回):両建て注文(II)
前回の記事とは異なり、今回はエキスパートアドバイザー(EA)を用いて選択オプションをテストしてみます。最終的な解決策ではありませんが、現時点では十分な内容となっています。本記事を通じて、1つの実現可能な解決方法の実装手順を理解できます。
ブラックホールアルゴリズム(BHA)
ブラックホールアルゴリズム(BHA)は、ブラックホールの重力原理に着想を得た最適化アルゴリズムです。本記事では、BHAがどのようにして優れた解を引き寄せ、局所最適解への陥り込みを回避するのか、そしてなぜこのアルゴリズムが複雑な問題を解くための強力なツールとなっているのかを解説します。シンプルな発想がいかにして最適化の世界で大きな成果を生み出すのかを見ていきましょう。
PythonとMQL5で構築するマルチモジュール型取引ロボット(第1回):基本アーキテクチャと最初のモジュールの作成
Pythonによるデータ分析とMQL5による取引執行を組み合わせたモジュール型の取引システムを開発します。このシステムは、4つの独立したモジュールによって市場の異なる側面(ボリューム、アービトラージ、経済、リスク)を並行して監視します。ランダムフォレストを400本の決定木で構成したモデルを用いて市場データを分析します。特に本システムでは、リスク管理に重点を置いています。どれほど高度なアルゴリズムであっても、適切なリスク管理がなければ意味がありません。
人工部族アルゴリズム(ATA)
本記事では、状況に応じて適応的に動作する独自の二重行動システムを備えた進化的手法、人工部族アルゴリズム(ATA: Artificial Tribe Algorithm)の主要要素と革新点について、詳細に説明します。ATAは、個体学習と社会的学習を組み合わせ、探索には交叉を用い、局所最適に陥った際には移動によって新たな解を探索するためのアルゴリズムです。
市場シミュレーション(第1回):両建て注文(I)
本日から第2段階に入り、市場リプレイ/シミュレーションシステムについて見ていきます。まず、両建て注文の可能な解決策を示します。これは最終版ではありませんが、近い将来に解決しなければならない問題に対するひとつの可能なアプローチとなります。
取引におけるニューラルネットワーク:Attentionメカニズムを備えたエージェントのアンサンブル(最終回)
前回の記事では、複数のエージェントによるアンサンブルを用いて、異なるデータスケールのマルチモーダル時系列をクロス分析するマルチエージェント適応型フレームワーク「MASAAT」を紹介しました。今回は、このフレームワークのアプローチをMQL5で引き続き実装し、この研究を論理的な結論へと導きます。
リプレイシステムの開発(第78回):新しいChart Trade(V)
本記事では、受信側コードの一部の実装方法について解説します。ここでは、プロトコルの相互作用をテストし理解するためのエキスパートアドバイザー(EA)を実装します。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。
リプレイシステムの開発(第77回):新しいChart Trade (IV)
この記事では、通信プロトコルを作成する際に考慮すべきいくつかの対策や注意点について説明します。内容は比較的シンプルでわかりやすいものなので、詳細には触れません。しかし、この記事の内容を理解することで、今後の展開が把握しやすくなります。
1 2 →