Loading

kuromoji_tokenizer

The kuromoji_tokenizer accepts the following settings:

mode
The tokenization mode determines how the tokenizer handles compound and unknown words. It can be set to:
normal

Normal segmentation, no decomposition for compounds. Example output:

 関西国際空港 アブラカダブラ 
search

Segmentation geared towards search. This includes a decompounding process for long nouns, also including the full compound token as a synonym. Example output:

 関西, 関西国際空港, 国際, 空港 アブラカダブラ 
extended

Extended mode outputs unigrams for unknown words. Example output:

 関西, 関西国際空港, 国際, 空港 ア, ブ, ラ, カ, ダ, ブ, ラ 
discard_punctuation
Whether punctuation should be discarded from the output. Defaults to true.
lenient
Whether the user_dictionary should be deduplicated on the provided text. False by default causing duplicates to generate an error.
user_dictionary
The Kuromoji tokenizer uses the MeCab-IPADIC dictionary by default. A user_dictionary may be appended to the default dictionary. The dictionary should have the following CSV format:
 <text>,<token 1> ... <token n>,<reading 1> ... <reading n>,<part-of-speech tag> 

As a demonstration of how the user dictionary can be used, save the following dictionary to $ES_HOME/config/userdict_ja.txt:

 東京スカイツリー,東京 スカイツリー,トウキョウ スカイツリー,カスタム名詞 

You can also inline the rules directly in the tokenizer definition using the user_dictionary_rules option:

 PUT kuromoji_sample { "settings": { "index": { "analysis": { "tokenizer": { "kuromoji_user_dict": { "type": "kuromoji_tokenizer", "mode": "extended", "user_dictionary_rules": ["東京スカイツリー,東京 スカイツリー,トウキョウ スカイツリー,カスタム名詞"] } }, "analyzer": { "my_analyzer": { "type": "custom", "tokenizer": "kuromoji_user_dict" } } } } } } 
nbest_cost/nbest_examples
Additional expert user parameters nbest_cost and nbest_examples can be used to include additional tokens that are most likely according to the statistical model. If both parameters are used, the largest number of both is applied.
nbest_cost
The nbest_cost parameter specifies an additional Viterbi cost. The KuromojiTokenizer will include all tokens in Viterbi paths that are within the nbest_cost value of the best path.
nbest_examples
The nbest_examples can be used to find a nbest_cost value based on examples. For example, a value of /箱根山-箱根/成田空港-成田/ indicates that in the texts, 箱根山 (Mt. Hakone) and 成田空港 (Narita Airport) we’d like a cost that gives is us 箱根 (Hakone) and 成田 (Narita).

Then create an analyzer as follows:

 PUT kuromoji_sample { "settings": { "index": { "analysis": { "tokenizer": { "kuromoji_user_dict": { "type": "kuromoji_tokenizer", "mode": "extended", "discard_punctuation": "false", "user_dictionary": "userdict_ja.txt", "lenient": "true" } }, "analyzer": { "my_analyzer": { "type": "custom", "tokenizer": "kuromoji_user_dict" } } } } } } GET kuromoji_sample/_analyze { "analyzer": "my_analyzer", "text": "東京スカイツリー" } 

The above analyze request returns the following:

 { "tokens" : [ { "token" : "東京", "start_offset" : 0, "end_offset" : 2, "type" : "word", "position" : 0 }, { "token" : "スカイツリー", "start_offset" : 2, "end_offset" : 8, "type" : "word", "position" : 1 } ] } 
discard_compound_token

Whether original compound tokens should be discarded from the output with search mode. Defaults to false. Example output with search or extended mode and this option true:

 関西, 国際, 空港 
Note

If a text contains full-width characters, the kuromoji_tokenizer tokenizer can produce unexpected tokens. To avoid this, add the icu_normalizer character filter to your analyzer. See Normalize full-width characters.