Create an JinaAI inference endpoint Generally available; Added in 8.18.0
Create an inference endpoint to perform an inference task with the jinaai
service.
To review the available rerank
models, refer to https://jina.ai/reranker. To review the available text_embedding
models, refer to the https://jina.ai/embeddings/.
Required authorization
- Cluster privileges:
manage_inference
Path parameters
-
The type of the inference task that the model will perform.
Values are
rerank
ortext_embedding
. -
The unique identifier of the inference endpoint.
Query parameters
-
Specifies the amount of time to wait for the inference endpoint to be created.
External documentation
Body
-
The chunking configuration object.
-
The type of service supported for the specified task type. In this case,
jinaai
.Value is
jinaai
. -
Settings used to install the inference model. These settings are specific to the
jinaai
service. -
Settings to configure the inference task. These settings are specific to the task type you specified.
PUT _inference/text_embedding/jinaai-embeddings { "service": "jinaai", "service_settings": { "model_id": "jina-embeddings-v3", "api_key": "JinaAi-Api-key" } }
resp = client.inference.put( task_type="text_embedding", inference_id="jinaai-embeddings", inference_config={ "service": "jinaai", "service_settings": { "model_id": "jina-embeddings-v3", "api_key": "JinaAi-Api-key" } }, )
const response = await client.inference.put({ task_type: "text_embedding", inference_id: "jinaai-embeddings", inference_config: { service: "jinaai", service_settings: { model_id: "jina-embeddings-v3", api_key: "JinaAi-Api-key", }, }, });
response = client.inference.put( task_type: "text_embedding", inference_id: "jinaai-embeddings", body: { "service": "jinaai", "service_settings": { "model_id": "jina-embeddings-v3", "api_key": "JinaAi-Api-key" } } )
$resp = $client->inference()->put([ "task_type" => "text_embedding", "inference_id" => "jinaai-embeddings", "body" => [ "service" => "jinaai", "service_settings" => [ "model_id" => "jina-embeddings-v3", "api_key" => "JinaAi-Api-key", ], ], ]);
curl -X PUT -H "Authorization: ApiKey $ELASTIC_API_KEY" -H "Content-Type: application/json" -d '{"service":"jinaai","service_settings":{"model_id":"jina-embeddings-v3","api_key":"JinaAi-Api-key"}}' "$ELASTICSEARCH_URL/_inference/text_embedding/jinaai-embeddings"
client.inference().put(p -> p .inferenceId("jinaai-embeddings") .taskType(TaskType.TextEmbedding) .inferenceConfig(i -> i .service("jinaai") .serviceSettings(JsonData.fromJson("{\"model_id\":\"jina-embeddings-v3\",\"api_key\":\"JinaAi-Api-key\"}")) ) );
{ "service": "jinaai", "service_settings": { "model_id": "jina-embeddings-v3", "api_key": "JinaAi-Api-key" } }
{ "service": "jinaai", "service_settings": { "api_key": "JinaAI-Api-key", "model_id": "jina-reranker-v2-base-multilingual" }, "task_settings": { "top_n": 10, "return_documents": true } }