Create an Azure AI studio inference endpoint Generally available; Added in 8.14.0
Path parameters
-
The type of the inference task that the model will perform.
Values are
completion
ortext_embedding
. -
The unique identifier of the inference endpoint.
PUT /_inference/{task_type}/{azureaistudio_inference_id}
Console
PUT _inference/text_embedding/azure_ai_studio_embeddings { "service": "azureaistudio", "service_settings": { "api_key": "Azure-AI-Studio-API-key", "target": "Target-Uri", "provider": "openai", "endpoint_type": "token" } }
resp = client.inference.put( task_type="text_embedding", inference_id="azure_ai_studio_embeddings", inference_config={ "service": "azureaistudio", "service_settings": { "api_key": "Azure-AI-Studio-API-key", "target": "Target-Uri", "provider": "openai", "endpoint_type": "token" } }, )
const response = await client.inference.put({ task_type: "text_embedding", inference_id: "azure_ai_studio_embeddings", inference_config: { service: "azureaistudio", service_settings: { api_key: "Azure-AI-Studio-API-key", target: "Target-Uri", provider: "openai", endpoint_type: "token", }, }, });
response = client.inference.put( task_type: "text_embedding", inference_id: "azure_ai_studio_embeddings", body: { "service": "azureaistudio", "service_settings": { "api_key": "Azure-AI-Studio-API-key", "target": "Target-Uri", "provider": "openai", "endpoint_type": "token" } } )
$resp = $client->inference()->put([ "task_type" => "text_embedding", "inference_id" => "azure_ai_studio_embeddings", "body" => [ "service" => "azureaistudio", "service_settings" => [ "api_key" => "Azure-AI-Studio-API-key", "target" => "Target-Uri", "provider" => "openai", "endpoint_type" => "token", ], ], ]);
curl -X PUT -H "Authorization: ApiKey $ELASTIC_API_KEY" -H "Content-Type: application/json" -d '{"service":"azureaistudio","service_settings":{"api_key":"Azure-AI-Studio-API-key","target":"Target-Uri","provider":"openai","endpoint_type":"token"}}' "$ELASTICSEARCH_URL/_inference/text_embedding/azure_ai_studio_embeddings"
client.inference().put(p -> p .inferenceId("azure_ai_studio_embeddings") .taskType(TaskType.TextEmbedding) .inferenceConfig(i -> i .service("azureaistudio") .serviceSettings(JsonData.fromJson("{\"api_key\":\"Azure-AI-Studio-API-key\",\"target\":\"Target-Uri\",\"provider\":\"openai\",\"endpoint_type\":\"token\"}")) ) );
Request examples
A text embedding task
Run `PUT _inference/text_embedding/azure_ai_studio_embeddings` to create an inference endpoint that performs a text_embedding task. Note that you do not specify a model here, as it is defined already in the Azure AI Studio deployment.
{ "service": "azureaistudio", "service_settings": { "api_key": "Azure-AI-Studio-API-key", "target": "Target-Uri", "provider": "openai", "endpoint_type": "token" } }
Run `PUT _inference/completion/azure_ai_studio_completion` to create an inference endpoint that performs a completion task.
{ "service": "azureaistudio", "service_settings": { "api_key": "Azure-AI-Studio-API-key", "target": "Target-URI", "provider": "databricks", "endpoint_type": "realtime" } }