If a function has a Fourier series given by
 | (1) |
then Bessel's inequality becomes an equality known as Parseval's theorem. From (1),
![[f(x)]^2=1/4a_0^2+a_0sum_(n=1)^infty[a_ncos(nx)+b_nsin(nx)]+sum_(n=1)^inftysum_(m=1)^infty[a_na_mcos(nx)cos(mx)+a_nb_mcos(nx)sin(mx)+a_mb_nsin(nx)cos(mx)+b_nb_msin(nx)sin(mx)].](https://mathworld.wolfram.com/images/equations/ParsevalsTheorem/NumberedEquation2.svg) | (2) |
Integrating
![int_(-pi)^pi[f(x)]^2dx=1/4a_0^2int_(-pi)^pidx+a_0int_(-pi)^pisum_(n=1)^infty[a_ncos(nx)+b_nsin(nx)]dx+int_(-pi)^pisum_(n=1)^inftysum_(m=1)^infty[a_na_mcos(nx)cos(mx)+a_nb_mcos(nx)sin(mx)+a_mb_nsin(nx)cos(mx)+b_nb_msin(nx)sin(mx)]dx =1/4a_0^2(2pi)+0+sum_(n=1)^inftysum_(m=1)^infty[a_na_mpidelta_(nm)+0+0+b_nb_mpidelta_(nm)],](https://mathworld.wolfram.com/images/equations/ParsevalsTheorem/NumberedEquation3.svg) | (3) |
so
![1/piint_(-pi)^pi[f(x)]^2dx=1/2a_0^2+sum_(n=1)^infty(a_n^2+b_n^2).](https://mathworld.wolfram.com/images/equations/ParsevalsTheorem/NumberedEquation4.svg) | (4) |
For a generalized Fourier series of a complete orthogonal system
, an analogous relationship holds.
For a complex Fourier series,
 | (5) |
See also
Bessel's Inequality,
Complete Orthogonal System,
Fourier Series,
Generalized Fourier Series,
Plancherel's Theorem,
Power Spectrum Explore with Wolfram|Alpha
References
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, p. 1101, 2000.Kaplan, W. Advanced Calculus, 4th ed. Reading, MA: Addison-Wesley, p. 501, 1992.Referenced on Wolfram|Alpha
Parseval's Theorem Cite this as:
Weisstein, Eric W. "Parseval's Theorem." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/ParsevalsTheorem.html
Subject classifications