Define
(cf. the usual nome), where
is in the upper half-plane. Then the modular discriminant is defined by
 | (1) |
However, some care is needed as some authors omit the factor of
when defining the discriminant (Rankin 1977, p. 196; Berndt 1988, p. 326; Milne 2000).
If
and
are the elliptic invariants of a Weierstrass elliptic function
with periods
and
, then the discriminant is defined by
 | (2) |
Letting
, then
The Fourier series of
for
, where
is the upper half-plane, is
 | (6) |
where
is the tau function, and
are integers (Apostol 1997, p. 20). The discriminant can also be expressed in terms of the Dedekind eta function
by
![Delta(tau)=(2pi)^(12)[eta(tau)]^(24)](https://mathworld.wolfram.com/images/equations/ModularDiscriminant/NumberedEquation4.svg) | (7) |
(Apostol 1997, p. 51).
See also
Dedekind Eta Function,
Elliptic Invariants,
Klein's Absolute Invariant,
Nome,
Tau Function,
Weierstrass Elliptic Function Explore with Wolfram|Alpha
References
Apostol, T. M. "The Discriminant
" and "The Fourier Expansions of
and
." §1.11 and 1.15 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 14 and 20-22, 1997.Berndt, B. C. Ramanujan's Notebooks, Part II. New York: Springer-Verlag, p. 326, 1988.Brezhnev, Y. V. "Uniformisation: On the Burnside Curve
." 9 Dec 2001. http://arxiv.org/abs/math.CA/0111150.Milne, S. C. "Hankel Determinants of Eisenstein Series." 13 Sep 2000. http://arxiv.org/abs/math.NT/0009130.Nesterenko, Yu. V. A Course on Algebraic Independence: Lectures at IHP 1999. Unpublished manuscript. 1999.Rankin, R. A. Modular Forms and Functions. Cambridge, England: Cambridge University Press, p. 196, 1977.Referenced on Wolfram|Alpha
Modular Discriminant Cite this as:
Weisstein, Eric W. "Modular Discriminant." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/ModularDiscriminant.html
Subject classifications