Skip to content
Prev Previous commit
Next Next commit
DOC add examples
  • Loading branch information
glemaitre committed Aug 11, 2017
commit f484631e059f6057bd3c4434d6d1556bd1b4b832
4 changes: 4 additions & 0 deletions doc/whats_new.rst
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,10 @@ New features
Enhancement
~~~~~~~~~~~

- Add :class:`ensemble.BalancedBaggingClassifier` which is a meta estimator to
directly use the :class:`ensemble.EasyEnsemble` chained with a classifier. By
`Guillaume Lemaitre`_.

- :func:`datasets.make_imbalance` take a ratio similarly to other samplers. It
supports multiclass. By `Guillaume Lemaitre`_.

Expand Down
104 changes: 104 additions & 0 deletions examples/ensemble/plot_comparison_bagging_classifier.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
"""
=========================================================
Comparison of balanced and imbalanced bagging classifiers
=========================================================

This example shows the benefit of balancing the training set when using a
bagging classifier. ``BalancedBaggingClassifier`` chains a
``RandomUnderSampler`` and a given classifier while ``BaggingClassifier`` is
using directly the imbalanced data.

Balancing the data set before training the classifier improve the
classification performance. In addition, it avoids the ensemble to focus on the
majority class which would be a known drawback of the decision tree
classifiers.

"""

# Authors: Guillaume Lemaitre <g.lemaitre58@gmail.com>
# License: MIT

from collections import Counter
import itertools

import matplotlib.pyplot as plt
import numpy as np

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import BaggingClassifier
from sklearn.metrics import confusion_matrix

from imblearn.datasets import make_imbalance
from imblearn.ensemble import BalancedBaggingClassifier

from imblearn.metrics import classification_report_imbalanced


def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')

print(cm)

plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)

fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")

plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')


iris = load_iris()
X, y = make_imbalance(iris.data, iris.target, ratio={0: 25, 1: 40, 2: 50},
random_state=0)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

bagging = BaggingClassifier(random_state=0)
balanced_bagging = BalancedBaggingClassifier(random_state=0)

print('Class distribution of the training set: {}'.format(Counter(y_train)))

bagging.fit(X_train, y_train)
balanced_bagging.fit(X_train, y_train)

print('Class distribution of the test set: {}'.format(Counter(y_test)))

print('Classification results using a bagging classifier on imbalanced data')
y_pred_bagging = bagging.predict(X_test)
print(classification_report_imbalanced(y_test, y_pred_bagging))
cm_bagging = confusion_matrix(y_test, y_pred_bagging)
plt.figure()
plot_confusion_matrix(cm_bagging, classes=iris.target_names,
title='Confusion matrix using BaggingClassifier')

print('Classification results using a bagging classifier on balanced data')
y_pred_balanced_bagging = balanced_bagging.predict(X_test)
print(classification_report_imbalanced(y_test, y_pred_balanced_bagging))
cm_balanced_bagging = confusion_matrix(y_test, y_pred_balanced_bagging)
plt.figure()
plot_confusion_matrix(cm_balanced_bagging, classes=iris.target_names,
title='Confusion matrix using BalancedBaggingClassifier')

plt.show()
23 changes: 22 additions & 1 deletion imblearn/ensemble/easy_ensemble.py
Original file line number Diff line number Diff line change
Expand Up @@ -285,9 +285,30 @@ class BalancedBaggingClassifier(BaggingClassifier):
was never left out during the bootstrap. In this case,
`oob_decision_function_` might contain NaN.

>>> from collections import Counter
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.metrics import confusion_matrix
>>> from imblearn.ensemble import \
BalancedBaggingClassifier # doctest: +NORMALIZE_WHITESPACE
>>> X, y = make_classification(n_classes=2, class_sep=2,
... weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0,
... n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10)
>>> print('Original dataset shape {}'.format(Counter(y)))
Original dataset shape Counter({1: 900, 0: 100})
>>> X_train, X_test, y_train, y_test = train_test_split(X, y,
... random_state=0)
>>> bbc = BalancedBaggingClassifier(random_state=42)
>>> bbc.fit(X_train, y_train) # doctest: +ELLIPSIS
BalancedBaggingClassifier(...)
>>> y_pred = bbc.predict(X_test)
>>> print(confusion_matrix(y_test, y_pred))
[[ 23 0]
[ 2 225]]

References
----------
.. [1] L. Breiman, "Pasting small votes for classification in large
.. [1] L". Breiman, Pasting small votes for classification in large
databases and on-line", Machine Learning, 36(1), 85-103, 1999.
.. [2] L. Breiman, "Bagging predictors", Machine Learning, 24(2), 123-140,
1996.
Expand Down