Skip to content

bayesian-object-tracking/dbot

Repository files navigation

Depth Based Object Tracking Library (dbot)

This library implements two different object tracking algorithms:

 inproceedings{wuthrich-iros-2013, title = {Probabilistic Object Tracking Using a Range Camera}, author = {W{\"u}thrich, M. and Pastor, P. and Kalakrishnan, M. and Bohg, J. and Schaal, S.}, booktitle = {IEEE/RSJ International Conference on Intelligent Robots and Systems}, pages = {3195-3202}, publisher = {IEEE}, month = nov, year = {2013}, month_numeric = {11} } 
 @inproceedings{jan_ICRA_2016, title = {Depth-based Object Tracking Using a Robust Gaussian Filter}, author = {Issac, Jan and W{\"u}thrich, Manuel and Garcia Cifuentes, Cristina and Bohg, Jeannette and Trimpe, Sebastian and Schaal, Stefan}, booktitle = {Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016}, publisher = {IEEE}, month = may, year = {2016}, url = {http://arxiv.org/abs/1602.06157}, month_numeric = {5} } 

All trackers require mesh models of the tracked objects in Wavefront (.obj) format. To get started, we recommend that you follow the instructions at https://github.com/bayesian-object-tracking/getting_started.

Requirements

  • Ubuntu 14.04
  • C++11 Compiler (gcc-4.7 or later)
  • CUDA 6.5 or later (optional)

Dependecies

Compiling

The cmake package uses Catkin. If you have installed ROS groovy or later, then you most likely have catkin installed already.

 $ cd $HOME $ mkdir -p projects/tracking/src $ cd projects/tracking/src $ git clone git@github.com:filtering-library/fl.git $ git clone git@github.com:bayesian-object-tracking/dbot.git $ cd .. $ catkin_make -DCMAKE_BUILD_TYPE=Release -DDBOT_BUILD_GPU=On 

If no CUDA enabled device is available, you can deactivate the GPU implementation via

 $ catkin_make -DCMAKE_BUILD_TYPE=Release -DDBOT_BUILD_GPU=Off 

How to use dbot

Checkout the ros nodes of each tracker in dbot_ros package for exact usage of the filters.