Skip to content
109 changes: 109 additions & 0 deletions src/main/java/com/thealgorithms/physics/DampedOscillator.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
package com.thealgorithms.physics;

/**
* Models a damped harmonic oscillator, capturing the behavior of a mass-spring-damper system.
*
* <p>The system is defined by the second-order differential equation:
* x'' + 2 * gamma * x' + omega₀² * x = 0
* where:
* <ul>
* <li><b>omega₀</b> is the natural (undamped) angular frequency in radians per second.</li>
* <li><b>gamma</b> is the damping coefficient in inverse seconds.</li>
* </ul>
*
* <p>This implementation provides:
* <ul>
* <li>An analytical solution for the underdamped case (γ < ω₀).</li>
* <li>A numerical integrator based on the explicit Euler method for simulation purposes.</li>
* </ul>
*
* <p><strong>Usage Example:</strong>
* <pre>{@code
* DampedOscillator oscillator = new DampedOscillator(10.0, 0.5);
* double displacement = oscillator.displacementAnalytical(1.0, 0.0, 0.1);
* double[] nextState = oscillator.stepEuler(new double[]{1.0, 0.0}, 0.001);
* }</pre>
*
* @author [Yash Rajput](https://github.com/the-yash-rajput)
*/
public final class DampedOscillator {

/** Natural (undamped) angular frequency (rad/s). */
private final double omega0;

/** Damping coefficient (s⁻¹). */
private final double gamma;

private DampedOscillator() {
throw new AssertionError("No instances.");
}

/**
* Constructs a damped oscillator model.
*
* @param omega0 the natural frequency (rad/s), must be positive
* @param gamma the damping coefficient (s⁻¹), must be non-negative
* @throws IllegalArgumentException if parameters are invalid
*/
public DampedOscillator(double omega0, double gamma) {
if (omega0 <= 0) {
throw new IllegalArgumentException("Natural frequency must be positive.");
}
if (gamma < 0) {
throw new IllegalArgumentException("Damping coefficient must be non-negative.");
}
this.omega0 = omega0;
this.gamma = gamma;
}

/**
* Computes the analytical displacement of an underdamped oscillator.
* Formula: x(t) = A * exp(-γt) * cos(ω_d t + φ)
*
* @param amplitude the initial amplitude A
* @param phase the initial phase φ (radians)
* @param time the time t (seconds)
* @return the displacement x(t)
*/
public double displacementAnalytical(double amplitude, double phase, double time) {
double omegaD = Math.sqrt(Math.max(0.0, omega0 * omega0 - gamma * gamma));
return amplitude * Math.exp(-gamma * time) * Math.cos(omegaD * time + phase);
}

/**
* Performs a single integration step using the explicit Euler method.
* State vector format: [x, v], where v = dx/dt.
*
* @param state the current state [x, v]
* @param dt the time step (seconds)
* @return the next state [x_next, v_next]
* @throws IllegalArgumentException if the state array is invalid or dt is non-positive
*/
public double[] stepEuler(double[] state, double dt) {
if (state == null || state.length != 2) {
throw new IllegalArgumentException("State must be a non-null array of length 2.");
}
if (dt <= 0) {
throw new IllegalArgumentException("Time step must be positive.");
}

double x = state[0];
double v = state[1];
double acceleration = -2.0 * gamma * v - omega0 * omega0 * x;

double xNext = x + dt * v;
double vNext = v + dt * acceleration;

return new double[] {xNext, vNext};
}

/** @return the natural (undamped) angular frequency (rad/s). */
public double getOmega0() {
return omega0;
}

/** @return the damping coefficient (s⁻¹). */
public double getGamma() {
return gamma;
}
}
143 changes: 143 additions & 0 deletions src/test/java/com/thealgorithms/physics/DampedOscillatorTest.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,143 @@
package com.thealgorithms.physics;

import static org.junit.jupiter.api.Assertions.assertAll;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertThrows;

import org.junit.jupiter.api.DisplayName;
import org.junit.jupiter.api.Test;

/**
* Unit tests for {@link DampedOscillator}.
*
* <p>Tests focus on:
* <ul>
* <li>Constructor validation</li>
* <li>Analytical displacement for underdamped and overdamped parameterizations</li>
* <li>Basic numeric integration sanity using explicit Euler for small step sizes</li>
* <li>Method argument validation (null/invalid inputs)</li>
* </ul>
*/
@DisplayName("DampedOscillator — unit tests")
public class DampedOscillatorTest {

private static final double TOLERANCE = 1e-3;

@Test
@DisplayName("Constructor rejects invalid parameters")
void constructorValidation() {
assertAll("invalid-constructor-params",
()
-> assertThrows(IllegalArgumentException.class, () -> new DampedOscillator(0.0, 0.1), "omega0 == 0 should throw"),
() -> assertThrows(IllegalArgumentException.class, () -> new DampedOscillator(-1.0, 0.1), "negative omega0 should throw"), () -> assertThrows(IllegalArgumentException.class, () -> new DampedOscillator(1.0, -0.1), "negative gamma should throw"));
}

@Test
@DisplayName("Analytical displacement matches expected formula for underdamped case")
void analyticalUnderdamped() {
double omega0 = 10.0;
double gamma = 0.5;
DampedOscillator d = new DampedOscillator(omega0, gamma);

double a = 1.0;
double phi = 0.2;
double t = 0.123;

// expected: a * exp(-gamma * t) * cos(omega_d * t + phi)
double omegaD = Math.sqrt(Math.max(0.0, omega0 * omega0 - gamma * gamma));
double expected = a * Math.exp(-gamma * t) * Math.cos(omegaD * t + phi);

double actual = d.displacementAnalytical(a, phi, t);
assertEquals(expected, actual, 1e-12, "Analytical underdamped displacement should match closed-form value");
}

@Test
@DisplayName("Analytical displacement gracefully handles overdamped parameters (omegaD -> 0)")
void analyticalOverdamped() {
double omega0 = 1.0;
double gamma = 2.0; // gamma > omega0 => omega_d = 0 in our implementation (Math.max)
DampedOscillator d = new DampedOscillator(omega0, gamma);

double a = 2.0;
double phi = Math.PI / 4.0;
double t = 0.5;

// With omegaD forced to 0 by implementation, expected simplifies to:
double expected = a * Math.exp(-gamma * t) * Math.cos(phi);
double actual = d.displacementAnalytical(a, phi, t);

assertEquals(expected, actual, 1e-12, "Overdamped handling should reduce to exponential * cos(phase)");
}

@Test
@DisplayName("Explicit Euler step approximates analytical solution for small dt over short time")
void eulerApproximatesAnalyticalSmallDt() {
double omega0 = 10.0;
double gamma = 0.5;
DampedOscillator d = new DampedOscillator(omega0, gamma);

double a = 1.0;
double phi = 0.0;

// initial conditions consistent with amplitude a and zero phase:
// x(0) = a, v(0) = -a * gamma * cos(phi) + a * omegaD * sin(phi)
double omegaD = Math.sqrt(Math.max(0.0, omega0 * omega0 - gamma * gamma));
double x0 = a * Math.cos(phi);
double v0 = -a * gamma * Math.cos(phi) - a * omegaD * Math.sin(phi); // small general form

double dt = 1e-4;
int steps = 1000; // simulate to t = 0.1s
double tFinal = steps * dt;

double[] state = new double[] {x0, v0};
for (int i = 0; i < steps; i++) {
state = d.stepEuler(state, dt);
}

double analyticAtT = d.displacementAnalytical(a, phi, tFinal);
double numericAtT = state[0];

// Euler is low-order — allow a small tolerance but assert it remains close for small dt + short time.
assertEquals(analyticAtT, numericAtT, TOLERANCE, String.format("Numeric Euler should approximate analytical solution at t=%.6f (tolerance=%g)", tFinal, TOLERANCE));
}

@Test
@DisplayName("stepEuler validates inputs and throws on null/invalid dt/state")
void eulerInputValidation() {
DampedOscillator d = new DampedOscillator(5.0, 0.1);

assertAll("invalid-stepEuler-args",
()
-> assertThrows(IllegalArgumentException.class, () -> d.stepEuler(null, 0.01), "null state should throw"),
()
-> assertThrows(IllegalArgumentException.class, () -> d.stepEuler(new double[] {1.0}, 0.01), "state array with invalid length should throw"),
() -> assertThrows(IllegalArgumentException.class, () -> d.stepEuler(new double[] {1.0, 0.0}, 0.0), "non-positive dt should throw"), () -> assertThrows(IllegalArgumentException.class, () -> d.stepEuler(new double[] {1.0, 0.0}, -1e-3), "negative dt should throw"));
}

@Test
@DisplayName("Getter methods return configured parameters")
void gettersReturnConfiguration() {
double omega0 = Math.PI;
double gamma = 0.01;
DampedOscillator d = new DampedOscillator(omega0, gamma);

assertAll("getters", () -> assertEquals(omega0, d.getOmega0(), 0.0, "getOmega0 should return configured omega0"), () -> assertEquals(gamma, d.getGamma(), 0.0, "getGamma should return configured gamma"));
}

@Test
@DisplayName("Analytical displacement at t=0 returns initial amplitude * cos(phase)")
void analyticalAtZeroTime() {
double omega0 = 5.0;
double gamma = 0.2;
DampedOscillator d = new DampedOscillator(omega0, gamma);

double a = 2.0;
double phi = Math.PI / 3.0;
double t = 0.0;

double expected = a * Math.cos(phi);
double actual = d.displacementAnalytical(a, phi, t);

assertEquals(expected, actual, 1e-12, "Displacement at t=0 should be a * cos(phase)");
}
}