Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,140 @@
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import paddle
import paddle.fluid as fluid
from functools import partial

CLASS_DIM = 2
EMB_DIM = 128
HID_DIM = 512
STACKED_NUM = 3


def stacked_lstm_net(data, input_dim, class_dim, emb_dim, hid_dim, stacked_num):
assert stacked_num % 2 == 1

emb = fluid.layers.embedding(
input=data, size=[input_dim, emb_dim], is_sparse=True)

fc1 = fluid.layers.fc(input=emb, size=hid_dim)
lstm1, cell1 = fluid.layers.dynamic_lstm(input=fc1, size=hid_dim)

inputs = [fc1, lstm1]

for i in range(2, stacked_num + 1):
fc = fluid.layers.fc(input=inputs, size=hid_dim)
lstm, cell = fluid.layers.dynamic_lstm(
input=fc, size=hid_dim, is_reverse=(i % 2) == 0)
inputs = [fc, lstm]

fc_last = fluid.layers.sequence_pool(input=inputs[0], pool_type='max')
lstm_last = fluid.layers.sequence_pool(input=inputs[1], pool_type='max')

prediction = fluid.layers.fc(input=[fc_last, lstm_last],
size=class_dim,
act='softmax')
return prediction


def inference_network(word_dict):
data = fluid.layers.data(
name="words", shape=[1], dtype="int64", lod_level=1)

dict_dim = len(word_dict)
net = stacked_lstm_net(data, dict_dim, CLASS_DIM, EMB_DIM, HID_DIM,
STACKED_NUM)
return net


def train_network(word_dict):
prediction = inference_network(word_dict)
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(cost)
accuracy = fluid.layers.accuracy(input=prediction, label=label)
return avg_cost, accuracy


def train(use_cuda, save_path):
BATCH_SIZE = 128
EPOCH_NUM = 5

word_dict = paddle.dataset.imdb.word_dict()

train_data = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.imdb.train(word_dict), buf_size=1000),
batch_size=BATCH_SIZE)

test_data = paddle.batch(
paddle.dataset.imdb.test(word_dict), batch_size=BATCH_SIZE)

def event_handler(event):
if isinstance(event, fluid.EndIteration):
if (event.batch_id % 10) == 0:
avg_cost, accuracy = trainer.test(reader=test_data)

print('BatchID {1:04}, Loss {2:2.2}, Acc {3:2.2}'.format(
event.batch_id + 1, avg_cost, accuracy))

if accuracy > 0.01: # Low threshold for speeding up CI
trainer.params.save(save_path)
return

place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
trainer = fluid.Trainer(
partial(train_network, word_dict),
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Nice use of partial. But probably we will have to think about how the Trainer API will parse both functions and functools.partial objects (for any use case except calling them).

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

optimizer=fluid.optimizer.Adagrad(learning_rate=0.002),
place=place,
event_handler=event_handler)

trainer.train(train_data, EPOCH_NUM, event_handler=event_handler)


def infer(use_cuda, save_path):
params = fluid.Params(save_path)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
word_dict = paddle.dataset.imdb.word_dict()
inferencer = fluid.Inferencer(
partial(inference_network, word_dict), params, place=place)

def create_random_lodtensor(lod, place, low, high):
data = np.random.random_integers(low, high,
[lod[-1], 1]).astype("int64")
res = fluid.LoDTensor()
res.set(data, place)
res.set_lod([lod])
return res

lod = [0, 4, 10]
tensor_words = create_random_lodtensor(
lod, place, low=0, high=len(word_dict) - 1)
results = inferencer.infer({'words': tensor_words})
print("infer results: ", results)


def main(use_cuda):
if use_cuda and not fluid.core.is_compiled_with_cuda():
return
save_path = "understand_sentiment_stacked_lstm.inference.model"
train(use_cuda, save_path)
infer(use_cuda, save_path)


if __name__ == '__main__':
for use_cuda in (False, True):
main(use_cuda=use_cuda)