Summary of entries of Methods for langchain-google-cloud-sql-pg.
langchain_google_cloud_sql_pg.engine._get_iam_principal_email
_get_iam_principal_email(credentials: google.auth.credentials.Credentials) -> str
Get email address associated with current authenticated IAM principal.
See more: langchain_google_cloud_sql_pg.engine._get_iam_principal_email
langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory
PostgresChatMessageHistory( key: object, engine: langchain_google_cloud_sql_pg.engine.PostgresEngine, history: langchain_google_cloud_sql_pg.async_chat_message_history.AsyncPostgresChatMessageHistory, )
PostgresChatMessageHistory constructor.
See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory
langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aadd_message
aadd_message(message: langchain_core.messages.base.BaseMessage) -> None
Append the message to the record in PostgreSQL.
See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aadd_message
langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aadd_messages
aadd_messages( messages: typing.Sequence[langchain_core.messages.base.BaseMessage], ) -> None
Append a list of messages to the record in PostgreSQL.
See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aadd_messages
langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aclear
aclear() -> None
Clear session memory from PostgreSQL.
See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aclear
langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.add_message
add_message(message: langchain_core.messages.base.BaseMessage) -> None
Append the message to the record in PostgreSQL.
See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.add_message
langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.add_messages
add_messages( messages: typing.Sequence[langchain_core.messages.base.BaseMessage], ) -> None
Append a list of messages to the record in PostgreSQL.
See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.add_messages
langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.clear
clear() -> None
Clear session memory from PostgreSQL.
See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.clear
langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.create
create( engine: langchain_google_cloud_sql_pg.engine.PostgresEngine, session_id: str, table_name: str, schema_name: str = "public", ) -> langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory
Create a new PostgresChatMessageHistory instance.
See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.create
langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.create_sync
create_sync( engine: langchain_google_cloud_sql_pg.engine.PostgresEngine, session_id: str, table_name: str, schema_name: str = "public", ) -> langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory
Create a new PostgresChatMessageHistory instance.
See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.create_sync
langchain_google_cloud_sql_pg.engine.Column.__post_init__
__post_init__()
Check if initialization parameters are valid.
See more: langchain_google_cloud_sql_pg.engine.Column.post_init
langchain_google_cloud_sql_pg.engine.PostgresEngine
PostgresEngine( key: object, pool: sqlalchemy.ext.asyncio.engine.AsyncEngine, loop: typing.Optional[asyncio.events.AbstractEventLoop], thread: typing.Optional[threading.Thread], )
PostgresEngine constructor.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine
langchain_google_cloud_sql_pg.engine.PostgresEngine._ainit_chat_history_table
_ainit_chat_history_table(table_name: str, schema_name: str = "public") -> None
Create a Cloud SQL table to store chat history.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._ainit_chat_history_table
langchain_google_cloud_sql_pg.engine.PostgresEngine._ainit_checkpoint_table
_ainit_checkpoint_table( table_name: str = "checkpoints", schema_name: str = "public" ) -> None
Create PgSQL tables to save checkpoints.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._ainit_checkpoint_table
langchain_google_cloud_sql_pg.engine.PostgresEngine._ainit_vectorstore_table
_ainit_vectorstore_table( table_name: str, vector_size: int, schema_name: str = "public", content_column: str = "content", embedding_column: str = "embedding", metadata_columns: list[langchain_google_cloud_sql_pg.engine.Column] = [], metadata_json_column: str = "langchain_metadata", id_column: typing.Union[ str, langchain_google_cloud_sql_pg.engine.Column ] = "langchain_id", overwrite_existing: bool = False, store_metadata: bool = True, ) -> None
Create a table for saving of vectors to be used with PostgresVectorStore.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._ainit_vectorstore_table
langchain_google_cloud_sql_pg.engine.PostgresEngine._aload_table_schema
_aload_table_schema( table_name: str, schema_name: str = "public" ) -> sqlalchemy.sql.schema.Table
Load table schema from existing table in PgSQL database.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._aload_table_schema
langchain_google_cloud_sql_pg.engine.PostgresEngine._create
_create( project_id: str, region: str, instance: str, database: str, ip_type: typing.Union[str, google.cloud.sql.connector.enums.IPTypes], user: typing.Optional[str] = None, password: typing.Optional[str] = None, loop: typing.Optional[asyncio.events.AbstractEventLoop] = None, thread: typing.Optional[threading.Thread] = None, quota_project: typing.Optional[str] = None, iam_account_email: typing.Optional[str] = None, engine_args: typing.Mapping = {}, ) -> langchain_google_cloud_sql_pg.engine.PostgresEngine
Create a PostgresEngine instance.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._create
langchain_google_cloud_sql_pg.engine.PostgresEngine._run_as_async
_run_as_async( coro: typing.Awaitable[langchain_google_cloud_sql_pg.engine.T], ) -> langchain_google_cloud_sql_pg.engine.T
Run an async coroutine asynchronously.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._run_as_async
langchain_google_cloud_sql_pg.engine.PostgresEngine._run_as_sync
_run_as_sync( coro: typing.Awaitable[langchain_google_cloud_sql_pg.engine.T], ) -> langchain_google_cloud_sql_pg.engine.T
Run an async coroutine synchronously.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._run_as_sync
langchain_google_cloud_sql_pg.engine.PostgresEngine.afrom_instance
afrom_instance( project_id: str, region: str, instance: str, database: str, user: typing.Optional[str] = None, password: typing.Optional[str] = None, ip_type: typing.Union[ str, google.cloud.sql.connector.enums.IPTypes ] = IPTypes.PUBLIC, quota_project: typing.Optional[str] = None, iam_account_email: typing.Optional[str] = None, engine_args: typing.Mapping = {}, ) -> langchain_google_cloud_sql_pg.engine.PostgresEngine
Create a PostgresEngine from a Postgres instance.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.afrom_instance
langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_chat_history_table
ainit_chat_history_table(table_name: str, schema_name: str = "public") -> None
Create a Cloud SQL table to store chat history.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_chat_history_table
langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_checkpoint_table
ainit_checkpoint_table( table_name: str = "checkpoints", schema_name: str = "public" ) -> None
Create an PgSQL table to save checkpoint messages.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_checkpoint_table
langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_document_table
ainit_document_table( table_name: str, schema_name: str = "public", content_column: str = "page_content", metadata_columns: list[langchain_google_cloud_sql_pg.engine.Column] = [], metadata_json_column: str = "langchain_metadata", store_metadata: bool = True, ) -> None
Create a table for saving of langchain documents.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_document_table
langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_vectorstore_table
ainit_vectorstore_table( table_name: str, vector_size: int, schema_name: str = "public", content_column: str = "content", embedding_column: str = "embedding", metadata_columns: list[langchain_google_cloud_sql_pg.engine.Column] = [], metadata_json_column: str = "langchain_metadata", id_column: typing.Union[ str, langchain_google_cloud_sql_pg.engine.Column ] = "langchain_id", overwrite_existing: bool = False, store_metadata: bool = True, ) -> None
Create a table for saving of vectors to be used with PostgresVectorStore.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_vectorstore_table
langchain_google_cloud_sql_pg.engine.PostgresEngine.close
close() -> None
Dispose of connection pool.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.close
langchain_google_cloud_sql_pg.engine.PostgresEngine.from_engine
from_engine( engine: sqlalchemy.ext.asyncio.engine.AsyncEngine, loop: typing.Optional[asyncio.events.AbstractEventLoop] = None, ) -> langchain_google_cloud_sql_pg.engine.PostgresEngine
Create an PostgresEngine instance from an AsyncEngine.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.from_engine
langchain_google_cloud_sql_pg.engine.PostgresEngine.from_engine_args
from_engine_args( url: str | sqlalchemy.engine.url.URL, **kwargs: typing.Any ) -> langchain_google_cloud_sql_pg.engine.PostgresEngine
Create an PostgresEngine instance from arguments.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.from_engine_args
langchain_google_cloud_sql_pg.engine.PostgresEngine.from_instance
from_instance( project_id: str, region: str, instance: str, database: str, user: typing.Optional[str] = None, password: typing.Optional[str] = None, ip_type: typing.Union[ str, google.cloud.sql.connector.enums.IPTypes ] = IPTypes.PUBLIC, quota_project: typing.Optional[str] = None, iam_account_email: typing.Optional[str] = None, engine_args: typing.Mapping = {}, ) -> langchain_google_cloud_sql_pg.engine.PostgresEngine
Create a PostgresEngine from a Postgres instance.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.from_instance
langchain_google_cloud_sql_pg.engine.PostgresEngine.init_chat_history_table
init_chat_history_table(table_name: str, schema_name: str = "public") -> None
Create a Cloud SQL table to store chat history.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.init_chat_history_table
langchain_google_cloud_sql_pg.engine.PostgresEngine.init_checkpoint_table
init_checkpoint_table( table_name: str = "checkpoints", schema_name: str = "public" ) -> None
Create Cloud SQL tables to store checkpoints.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.init_checkpoint_table
langchain_google_cloud_sql_pg.engine.PostgresEngine.init_document_table
init_document_table( table_name: str, schema_name: str = "public", content_column: str = "page_content", metadata_columns: list[langchain_google_cloud_sql_pg.engine.Column] = [], metadata_json_column: str = "langchain_metadata", store_metadata: bool = True, ) -> None
Create a table for saving of langchain documents.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.init_document_table
langchain_google_cloud_sql_pg.engine.PostgresEngine.init_vectorstore_table
init_vectorstore_table( table_name: str, vector_size: int, schema_name: str = "public", content_column: str = "content", embedding_column: str = "embedding", metadata_columns: list[langchain_google_cloud_sql_pg.engine.Column] = [], metadata_json_column: str = "langchain_metadata", id_column: typing.Union[ str, langchain_google_cloud_sql_pg.engine.Column ] = "langchain_id", overwrite_existing: bool = False, store_metadata: bool = True, ) -> None
Create a table for saving of vectors to be used with PostgresVectorStore.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.init_vectorstore_table
langchain_google_cloud_sql_pg.indexes.BaseIndex.index_options
index_options() -> str
Set index query options for vector store initialization.
See more: langchain_google_cloud_sql_pg.indexes.BaseIndex.index_options
langchain_google_cloud_sql_pg.indexes.DistanceStrategy._generate_next_value_
_generate_next_value_(start, count, last_values)
Generate the next value when not given.
See more: langchain_google_cloud_sql_pg.indexes.DistanceStrategy.generate_next_value
langchain_google_cloud_sql_pg.indexes.HNSWIndex.index_options
index_options() -> str
Set index query options for vector store initialization.
See more: langchain_google_cloud_sql_pg.indexes.HNSWIndex.index_options
langchain_google_cloud_sql_pg.indexes.HNSWQueryOptions.to_string
to_string()
Convert index attributes to string.
See more: langchain_google_cloud_sql_pg.indexes.HNSWQueryOptions.to_string
langchain_google_cloud_sql_pg.indexes.IVFFlatIndex.index_options
index_options() -> str
Set index query options for vector store initialization.
See more: langchain_google_cloud_sql_pg.indexes.IVFFlatIndex.index_options
langchain_google_cloud_sql_pg.indexes.IVFFlatQueryOptions.to_string
to_string()
Convert index attributes to string.
See more: langchain_google_cloud_sql_pg.indexes.IVFFlatQueryOptions.to_string
langchain_google_cloud_sql_pg.indexes.QueryOptions.to_string
to_string() -> str
Convert index attributes to string.
See more: langchain_google_cloud_sql_pg.indexes.QueryOptions.to_string