Package Methods (0.4.1)

Summary of entries of Methods for langchain-google-cloud-sql-pg.

langchain_google_cloud_sql_pg.chat_message_history._aget_messages

_aget_messages( engine: langchain_google_cloud_sql_pg.engine.PostgresEngine, session_id: str, table_name: str, ) -> typing.List[langchain_core.messages.base.BaseMessage]

Retrieve the messages from PostgreSQL.

See more: langchain_google_cloud_sql_pg.chat_message_history._aget_messages

langchain_google_cloud_sql_pg.engine._get_iam_principal_email

_get_iam_principal_email(credentials: google.auth.credentials.Credentials) -> str

Get email address associated with current authenticated IAM principal.

See more: langchain_google_cloud_sql_pg.engine._get_iam_principal_email

langchain_google_cloud_sql_pg.vectorstore.cosine_similarity

cosine_similarity( X: typing.Union[ typing.List[typing.List[float]], typing.List[numpy.ndarray], numpy.ndarray ], Y: typing.Union[ typing.List[typing.List[float]], typing.List[numpy.ndarray], numpy.ndarray ], ) -> numpy.ndarray

Row-wise cosine similarity between two equal-width matrices.

See more: langchain_google_cloud_sql_pg.vectorstore.cosine_similarity

langchain_google_cloud_sql_pg.vectorstore.maximal_marginal_relevance

maximal_marginal_relevance( query_embedding: numpy.ndarray, embedding_list: list, lambda_mult: float = 0.5, k: int = 4, ) -> typing.List[int]

Calculate maximal marginal relevance.

See more: langchain_google_cloud_sql_pg.vectorstore.maximal_marginal_relevance

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aadd_message

aadd_message(message: langchain_core.messages.base.BaseMessage) -> None

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aadd_messages

aadd_messages( messages: typing.Sequence[langchain_core.messages.base.BaseMessage], ) -> None

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aclear

aclear() -> None

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.add_message

add_message(message: langchain_core.messages.base.BaseMessage) -> None

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.add_messages

add_messages( messages: typing.Sequence[langchain_core.messages.base.BaseMessage], ) -> None

langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.clear

clear() -> None

langchain_google_cloud_sql_pg.engine.PostgresEngine._aexecute

_aexecute(query: str, params: typing.Optional[dict] = None)

langchain_google_cloud_sql_pg.engine.PostgresEngine._aexecute_outside_tx

_aexecute_outside_tx(query: str)

langchain_google_cloud_sql_pg.engine.PostgresEngine._aload_table_schema

_aload_table_schema(table_name: str) -> sqlalchemy.sql.schema.Table

Load table schema from existing table in PgSQL database.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._aload_table_schema

langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_document_table

ainit_document_table( table_name: str, content_column: str = "page_content", metadata_columns: typing.List[langchain_google_cloud_sql_pg.engine.Column] = [], metadata_json_column: str = "langchain_metadata", store_metadata: bool = True, ) -> None

Create a table for saving of langchain documents.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_document_table

langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_vectorstore_table

ainit_vectorstore_table( table_name: str, vector_size: int, content_column: str = "content", embedding_column: str = "embedding", metadata_columns: typing.List[langchain_google_cloud_sql_pg.engine.Column] = [], metadata_json_column: str = "langchain_metadata", id_column: str = "langchain_id", overwrite_existing: bool = False, store_metadata: bool = True, ) -> None

Create a table for saving of vectors to be used with PostgresVectorStore.

See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_vectorstore_table

langchain_google_cloud_sql_pg.indexes.DistanceStrategy._generate_next_value_

_generate_next_value_(start, count, last_values)

Generate the next value when not given.

See more: langchain_google_cloud_sql_pg.indexes.DistanceStrategy.generate_next_value

langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver._aload_table_schema

_aload_table_schema() -> sqlalchemy.sql.schema.Table

Load table schema from existing table in PgSQL database.

See more: langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver._aload_table_schema

langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.aadd_documents

aadd_documents(docs: typing.List[langchain_core.documents.base.Document]) -> None

Save documents in the DocumentSaver table.

See more: langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.aadd_documents

langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.adelete

adelete(docs: typing.List[langchain_core.documents.base.Document]) -> None

Delete all instances of a document from the DocumentSaver table by matching the entire Document object.

See more: langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.adelete

langchain_google_cloud_sql_pg.loader.PostgresLoader.alazy_load

alazy_load() -> typing.AsyncIterator[langchain_core.documents.base.Document]

Load PostgreSQL data into Document objects lazily.

See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.alazy_load

langchain_google_cloud_sql_pg.loader.PostgresLoader.aload

aload() -> typing.List[langchain_core.documents.base.Document]

Load PostgreSQL data into Document objects.

See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.aload

langchain_google_cloud_sql_pg.loader.PostgresLoader.create

create( engine: langchain_google_cloud_sql_pg.engine.PostgresEngine, query: typing.Optional[str] = None, table_name: typing.Optional[str] = None, content_columns: typing.Optional[typing.List[str]] = None, metadata_columns: typing.Optional[typing.List[str]] = None, metadata_json_column: typing.Optional[str] = None, format: typing.Optional[str] = None, formatter: typing.Optional[typing.Callable] = None, )

Constructor for PostgresLoader .

See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.create

langchain_google_cloud_sql_pg.loader.PostgresLoader.lazy_load

lazy_load() -> typing.Iterator[langchain_core.documents.base.Document]

Load PostgreSQL data into Document objects lazily.

See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.lazy_load

langchain_google_cloud_sql_pg.loader.PostgresLoader.load

load() -> typing.List[langchain_core.documents.base.Document]

Load PostgreSQL data into Document objects.

See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.load

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.aadd_documents

aadd_documents( documents: typing.List[langchain_core.documents.base.Document], ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any ) -> typing.List[str]

Run more documents through the embeddings and add to the vectorstore.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.aadd_documents

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.aadd_texts

aadd_texts( texts: typing.Iterable[str], metadatas: typing.Optional[typing.List[dict]] = None, ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any ) -> typing.List[str]

Run more texts through the embeddings and add to the vectorstore.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.aadd_texts

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.add_documents

add_documents( documents: typing.List[langchain_core.documents.base.Document], ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any ) -> typing.List[str]

Run more documents through the embeddings and add to the vectorstore.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.add_documents

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.add_texts

add_texts( texts: typing.Iterable[str], metadatas: typing.Optional[typing.List[dict]] = None, ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any ) -> typing.List[str]

Run more texts through the embeddings and add to the vectorstore.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.add_texts

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.adelete

adelete( ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any ) -> typing.Optional[bool]

Delete by vector ID or other criteria.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.adelete

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.afrom_documents

afrom_documents( documents: typing.List[langchain_core.documents.base.Document], embedding: langchain_core.embeddings.embeddings.Embeddings, engine: langchain_google_cloud_sql_pg.engine.PostgresEngine, table_name: str, ids: typing.Optional[typing.List[str]] = None, content_column: str = "content", embedding_column: str = "embedding", metadata_columns: typing.List[str] = [], ignore_metadata_columns: typing.Optional[typing.List[str]] = None, id_column: str = "langchain_id", metadata_json_column: str = "langchain_metadata", **kwargs: typing.Any ) -> langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore

Return VectorStore initialized from documents and embeddings.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.afrom_documents

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.afrom_texts

afrom_texts( texts: typing.List[str], embedding: langchain_core.embeddings.embeddings.Embeddings, engine: langchain_google_cloud_sql_pg.engine.PostgresEngine, table_name: str, metadatas: typing.Optional[typing.List[dict]] = None, ids: typing.Optional[typing.List[str]] = None, content_column: str = "content", embedding_column: str = "embedding", metadata_columns: typing.List[str] = [], ignore_metadata_columns: typing.Optional[typing.List[str]] = None, id_column: str = "langchain_id", metadata_json_column: str = "langchain_metadata", **kwargs: typing.Any ) -> langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore

Return VectorStore initialized from texts and embeddings.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.afrom_texts

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.amax_marginal_relevance_search

amax_marginal_relevance_search( query: str, k: typing.Optional[int] = None, fetch_k: typing.Optional[int] = None, lambda_mult: typing.Optional[float] = None, filter: typing.Optional[str] = None, **kwargs: typing.Any ) -> typing.List[langchain_core.documents.base.Document]

Return docs selected using the maximal marginal relevance.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.amax_marginal_relevance_search

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.amax_marginal_relevance_search_by_vector

amax_marginal_relevance_search_by_vector( embedding: typing.List[float], k: typing.Optional[int] = None, fetch_k: typing.Optional[int] = None, lambda_mult: typing.Optional[float] = None, filter: typing.Optional[str] = None, **kwargs: typing.Any ) -> typing.List[langchain_core.documents.base.Document]

Return docs selected using the maximal marginal relevance.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.amax_marginal_relevance_search_by_vector

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search

asimilarity_search( query: str, k: typing.Optional[int] = None, filter: typing.Optional[str] = None, **kwargs: typing.Any ) -> typing.List[langchain_core.documents.base.Document]

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search_by_vector

asimilarity_search_by_vector( embedding: typing.List[float], k: typing.Optional[int] = None, filter: typing.Optional[str] = None, **kwargs: typing.Any ) -> typing.List[langchain_core.documents.base.Document]

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search_with_score

asimilarity_search_with_score( query: str, k: typing.Optional[int] = None, filter: typing.Optional[str] = None, **kwargs: typing.Any ) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]

Run similarity search with distance asynchronously.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search_with_score

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.create

create( engine: langchain_google_cloud_sql_pg.engine.PostgresEngine, embedding_service: langchain_core.embeddings.embeddings.Embeddings, table_name: str, content_column: str = "content", embedding_column: str = "embedding", metadata_columns: typing.List[str] = [], ignore_metadata_columns: typing.Optional[typing.List[str]] = None, id_column: str = "langchain_id", metadata_json_column: typing.Optional[str] = "langchain_metadata", distance_strategy: langchain_google_cloud_sql_pg.indexes.DistanceStrategy = DistanceStrategy.COSINE_DISTANCE, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, index_query_options: typing.Optional[ langchain_google_cloud_sql_pg.indexes.QueryOptions ] = None, )

Constructor for PostgresVectorStore.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.create

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.delete

delete( ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any ) -> typing.Optional[bool]

Delete by vector ID or other criteria.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.delete

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.from_documents

from_documents( documents: typing.List[langchain_core.documents.base.Document], embedding: langchain_core.embeddings.embeddings.Embeddings, engine: langchain_google_cloud_sql_pg.engine.PostgresEngine, table_name: str, ids: typing.Optional[typing.List[str]] = None, content_column: str = "content", embedding_column: str = "embedding", metadata_columns: typing.List[str] = [], ignore_metadata_columns: typing.Optional[typing.List[str]] = None, id_column: str = "langchain_id", metadata_json_column: str = "langchain_metadata", **kwargs: typing.Any ) -> langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore

Return VectorStore initialized from documents and embeddings.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.from_documents

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.from_texts

from_texts( texts: typing.List[str], embedding: langchain_core.embeddings.embeddings.Embeddings, engine: langchain_google_cloud_sql_pg.engine.PostgresEngine, table_name: str, metadatas: typing.Optional[typing.List[dict]] = None, ids: typing.Optional[typing.List[str]] = None, content_column: str = "content", embedding_column: str = "embedding", metadata_columns: typing.List[str] = [], ignore_metadata_columns: typing.Optional[typing.List[str]] = None, id_column: str = "langchain_id", metadata_json_column: str = "langchain_metadata", **kwargs: typing.Any )

Return VectorStore initialized from texts and embeddings.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.from_texts

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.max_marginal_relevance_search

max_marginal_relevance_search( query: str, k: typing.Optional[int] = None, fetch_k: typing.Optional[int] = None, lambda_mult: typing.Optional[float] = None, filter: typing.Optional[str] = None, **kwargs: typing.Any ) -> typing.List[langchain_core.documents.base.Document]

Return docs selected using the maximal marginal relevance.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.max_marginal_relevance_search

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.max_marginal_relevance_search_by_vector

max_marginal_relevance_search_by_vector( embedding: typing.List[float], k: typing.Optional[int] = None, fetch_k: typing.Optional[int] = None, lambda_mult: typing.Optional[float] = None, filter: typing.Optional[str] = None, **kwargs: typing.Any ) -> typing.List[langchain_core.documents.base.Document]

Return docs selected using the maximal marginal relevance.

See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.max_marginal_relevance_search_by_vector

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search

similarity_search( query: str, k: typing.Optional[int] = None, filter: typing.Optional[str] = None, **kwargs: typing.Any ) -> typing.List[langchain_core.documents.base.Document]

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search_by_vector

similarity_search_by_vector( embedding: typing.List[float], k: typing.Optional[int] = None, filter: typing.Optional[str] = None, **kwargs: typing.Any ) -> typing.List[langchain_core.documents.base.Document]

langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search_with_score

similarity_search_with_score( query: str, k: typing.Optional[int] = None, filter: typing.Optional[str] = None, **kwargs: typing.Any ) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]