Summary of entries of Methods for langchain-google-cloud-sql-pg.
langchain_google_cloud_sql_pg.chat_message_history._aget_messages
_aget_messages( engine: langchain_google_cloud_sql_pg.engine.PostgresEngine, session_id: str, table_name: str, ) -> typing.List[langchain_core.messages.base.BaseMessage]
Retrieve the messages from PostgreSQL.
See more: langchain_google_cloud_sql_pg.chat_message_history._aget_messages
langchain_google_cloud_sql_pg.engine._get_iam_principal_email
_get_iam_principal_email(credentials: google.auth.credentials.Credentials) -> str
Get email address associated with current authenticated IAM principal.
See more: langchain_google_cloud_sql_pg.engine._get_iam_principal_email
langchain_google_cloud_sql_pg.vectorstore.cosine_similarity
cosine_similarity( X: typing.Union[ typing.List[typing.List[float]], typing.List[numpy.ndarray], numpy.ndarray ], Y: typing.Union[ typing.List[typing.List[float]], typing.List[numpy.ndarray], numpy.ndarray ], ) -> numpy.ndarray
Row-wise cosine similarity between two equal-width matrices.
See more: langchain_google_cloud_sql_pg.vectorstore.cosine_similarity
langchain_google_cloud_sql_pg.vectorstore.maximal_marginal_relevance
maximal_marginal_relevance( query_embedding: numpy.ndarray, embedding_list: list, lambda_mult: float = 0.5, k: int = 4, ) -> typing.List[int]
Calculate maximal marginal relevance.
See more: langchain_google_cloud_sql_pg.vectorstore.maximal_marginal_relevance
langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aadd_message
aadd_message(message: langchain_core.messages.base.BaseMessage) -> None
Append the message to the record in PostgreSQL.
See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aadd_message
langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aadd_messages
aadd_messages( messages: typing.Sequence[langchain_core.messages.base.BaseMessage], ) -> None
Add a list of messages.
See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aadd_messages
langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aclear
aclear() -> None
Clear session memory from PostgreSQL.
See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.aclear
langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.add_message
add_message(message: langchain_core.messages.base.BaseMessage) -> None
Add a Message object to the store.
See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.add_message
langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.add_messages
add_messages( messages: typing.Sequence[langchain_core.messages.base.BaseMessage], ) -> None
Add a list of messages.
See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.add_messages
langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.clear
clear() -> None
Remove all messages from the store.
See more: langchain_google_cloud_sql_pg.chat_message_history.PostgresChatMessageHistory.clear
langchain_google_cloud_sql_pg.engine.PostgresEngine._aexecute
_aexecute(query: str, params: typing.Optional[dict] = None)
Execute a SQL query.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._aexecute
langchain_google_cloud_sql_pg.engine.PostgresEngine._aexecute_outside_tx
_aexecute_outside_tx(query: str)
Execute a SQL query.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._aexecute_outside_tx
langchain_google_cloud_sql_pg.engine.PostgresEngine._aload_table_schema
_aload_table_schema(table_name: str) -> sqlalchemy.sql.schema.Table
Load table schema from existing table in PgSQL database.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine._aload_table_schema
langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_document_table
ainit_document_table( table_name: str, content_column: str = "page_content", metadata_columns: typing.List[langchain_google_cloud_sql_pg.engine.Column] = [], metadata_json_column: str = "langchain_metadata", store_metadata: bool = True, ) -> None
Create a table for saving of langchain documents.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_document_table
langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_vectorstore_table
ainit_vectorstore_table( table_name: str, vector_size: int, content_column: str = "content", embedding_column: str = "embedding", metadata_columns: typing.List[langchain_google_cloud_sql_pg.engine.Column] = [], metadata_json_column: str = "langchain_metadata", id_column: str = "langchain_id", overwrite_existing: bool = False, store_metadata: bool = True, ) -> None
Create a table for saving of vectors to be used with PostgresVectorStore.
See more: langchain_google_cloud_sql_pg.engine.PostgresEngine.ainit_vectorstore_table
langchain_google_cloud_sql_pg.indexes.DistanceStrategy._generate_next_value_
_generate_next_value_(start, count, last_values)
Generate the next value when not given.
See more: langchain_google_cloud_sql_pg.indexes.DistanceStrategy.generate_next_value
langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver._aload_table_schema
_aload_table_schema() -> sqlalchemy.sql.schema.Table
Load table schema from existing table in PgSQL database.
See more: langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver._aload_table_schema
langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.aadd_documents
aadd_documents(docs: typing.List[langchain_core.documents.base.Document]) -> None
Save documents in the DocumentSaver table.
See more: langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.aadd_documents
langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.adelete
adelete(docs: typing.List[langchain_core.documents.base.Document]) -> None
Delete all instances of a document from the DocumentSaver table by matching the entire Document object.
See more: langchain_google_cloud_sql_pg.loader.PostgresDocumentSaver.adelete
langchain_google_cloud_sql_pg.loader.PostgresLoader.alazy_load
alazy_load() -> typing.AsyncIterator[langchain_core.documents.base.Document]
Load PostgreSQL data into Document objects lazily.
See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.alazy_load
langchain_google_cloud_sql_pg.loader.PostgresLoader.aload
aload() -> typing.List[langchain_core.documents.base.Document]
Load PostgreSQL data into Document objects.
See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.aload
langchain_google_cloud_sql_pg.loader.PostgresLoader.create
create( engine: langchain_google_cloud_sql_pg.engine.PostgresEngine, query: typing.Optional[str] = None, table_name: typing.Optional[str] = None, content_columns: typing.Optional[typing.List[str]] = None, metadata_columns: typing.Optional[typing.List[str]] = None, metadata_json_column: typing.Optional[str] = None, format: typing.Optional[str] = None, formatter: typing.Optional[typing.Callable] = None, )
Constructor for PostgresLoader .
See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.create
langchain_google_cloud_sql_pg.loader.PostgresLoader.lazy_load
lazy_load() -> typing.Iterator[langchain_core.documents.base.Document]
Load PostgreSQL data into Document objects lazily.
See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.lazy_load
langchain_google_cloud_sql_pg.loader.PostgresLoader.load
load() -> typing.List[langchain_core.documents.base.Document]
Load PostgreSQL data into Document objects.
See more: langchain_google_cloud_sql_pg.loader.PostgresLoader.load
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.aadd_documents
aadd_documents( documents: typing.List[langchain_core.documents.base.Document], ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any ) -> typing.List[str]
Run more documents through the embeddings and add to the vectorstore.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.aadd_documents
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.aadd_texts
aadd_texts( texts: typing.Iterable[str], metadatas: typing.Optional[typing.List[dict]] = None, ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any ) -> typing.List[str]
Run more texts through the embeddings and add to the vectorstore.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.aadd_texts
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.add_documents
add_documents( documents: typing.List[langchain_core.documents.base.Document], ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any ) -> typing.List[str]
Run more documents through the embeddings and add to the vectorstore.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.add_documents
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.add_texts
add_texts( texts: typing.Iterable[str], metadatas: typing.Optional[typing.List[dict]] = None, ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any ) -> typing.List[str]
Run more texts through the embeddings and add to the vectorstore.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.add_texts
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.adelete
adelete( ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any ) -> typing.Optional[bool]
Delete by vector ID or other criteria.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.adelete
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.afrom_documents
afrom_documents( documents: typing.List[langchain_core.documents.base.Document], embedding: langchain_core.embeddings.embeddings.Embeddings, engine: langchain_google_cloud_sql_pg.engine.PostgresEngine, table_name: str, ids: typing.Optional[typing.List[str]] = None, content_column: str = "content", embedding_column: str = "embedding", metadata_columns: typing.List[str] = [], ignore_metadata_columns: typing.Optional[typing.List[str]] = None, id_column: str = "langchain_id", metadata_json_column: str = "langchain_metadata", **kwargs: typing.Any ) -> langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore
Return VectorStore initialized from documents and embeddings.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.afrom_documents
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.afrom_texts
afrom_texts( texts: typing.List[str], embedding: langchain_core.embeddings.embeddings.Embeddings, engine: langchain_google_cloud_sql_pg.engine.PostgresEngine, table_name: str, metadatas: typing.Optional[typing.List[dict]] = None, ids: typing.Optional[typing.List[str]] = None, content_column: str = "content", embedding_column: str = "embedding", metadata_columns: typing.List[str] = [], ignore_metadata_columns: typing.Optional[typing.List[str]] = None, id_column: str = "langchain_id", metadata_json_column: str = "langchain_metadata", **kwargs: typing.Any ) -> langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore
Return VectorStore initialized from texts and embeddings.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.afrom_texts
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.amax_marginal_relevance_search
amax_marginal_relevance_search( query: str, k: typing.Optional[int] = None, fetch_k: typing.Optional[int] = None, lambda_mult: typing.Optional[float] = None, filter: typing.Optional[str] = None, **kwargs: typing.Any ) -> typing.List[langchain_core.documents.base.Document]
Return docs selected using the maximal marginal relevance.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.amax_marginal_relevance_search
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.amax_marginal_relevance_search_by_vector
amax_marginal_relevance_search_by_vector( embedding: typing.List[float], k: typing.Optional[int] = None, fetch_k: typing.Optional[int] = None, lambda_mult: typing.Optional[float] = None, filter: typing.Optional[str] = None, **kwargs: typing.Any ) -> typing.List[langchain_core.documents.base.Document]
Return docs selected using the maximal marginal relevance.
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search
asimilarity_search( query: str, k: typing.Optional[int] = None, filter: typing.Optional[str] = None, **kwargs: typing.Any ) -> typing.List[langchain_core.documents.base.Document]
Return docs most similar to query.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search_by_vector
asimilarity_search_by_vector( embedding: typing.List[float], k: typing.Optional[int] = None, filter: typing.Optional[str] = None, **kwargs: typing.Any ) -> typing.List[langchain_core.documents.base.Document]
Return docs most similar to embedding vector.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search_by_vector
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search_with_score
asimilarity_search_with_score( query: str, k: typing.Optional[int] = None, filter: typing.Optional[str] = None, **kwargs: typing.Any ) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]
Run similarity search with distance asynchronously.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.asimilarity_search_with_score
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.create
create( engine: langchain_google_cloud_sql_pg.engine.PostgresEngine, embedding_service: langchain_core.embeddings.embeddings.Embeddings, table_name: str, content_column: str = "content", embedding_column: str = "embedding", metadata_columns: typing.List[str] = [], ignore_metadata_columns: typing.Optional[typing.List[str]] = None, id_column: str = "langchain_id", metadata_json_column: typing.Optional[str] = "langchain_metadata", distance_strategy: langchain_google_cloud_sql_pg.indexes.DistanceStrategy = DistanceStrategy.COSINE_DISTANCE, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, index_query_options: typing.Optional[ langchain_google_cloud_sql_pg.indexes.QueryOptions ] = None, )
Constructor for PostgresVectorStore.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.create
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.delete
delete( ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any ) -> typing.Optional[bool]
Delete by vector ID or other criteria.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.delete
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.from_documents
from_documents( documents: typing.List[langchain_core.documents.base.Document], embedding: langchain_core.embeddings.embeddings.Embeddings, engine: langchain_google_cloud_sql_pg.engine.PostgresEngine, table_name: str, ids: typing.Optional[typing.List[str]] = None, content_column: str = "content", embedding_column: str = "embedding", metadata_columns: typing.List[str] = [], ignore_metadata_columns: typing.Optional[typing.List[str]] = None, id_column: str = "langchain_id", metadata_json_column: str = "langchain_metadata", **kwargs: typing.Any ) -> langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore
Return VectorStore initialized from documents and embeddings.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.from_documents
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.from_texts
from_texts( texts: typing.List[str], embedding: langchain_core.embeddings.embeddings.Embeddings, engine: langchain_google_cloud_sql_pg.engine.PostgresEngine, table_name: str, metadatas: typing.Optional[typing.List[dict]] = None, ids: typing.Optional[typing.List[str]] = None, content_column: str = "content", embedding_column: str = "embedding", metadata_columns: typing.List[str] = [], ignore_metadata_columns: typing.Optional[typing.List[str]] = None, id_column: str = "langchain_id", metadata_json_column: str = "langchain_metadata", **kwargs: typing.Any )
Return VectorStore initialized from texts and embeddings.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.from_texts
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.max_marginal_relevance_search
max_marginal_relevance_search( query: str, k: typing.Optional[int] = None, fetch_k: typing.Optional[int] = None, lambda_mult: typing.Optional[float] = None, filter: typing.Optional[str] = None, **kwargs: typing.Any ) -> typing.List[langchain_core.documents.base.Document]
Return docs selected using the maximal marginal relevance.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.max_marginal_relevance_search
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.max_marginal_relevance_search_by_vector
max_marginal_relevance_search_by_vector( embedding: typing.List[float], k: typing.Optional[int] = None, fetch_k: typing.Optional[int] = None, lambda_mult: typing.Optional[float] = None, filter: typing.Optional[str] = None, **kwargs: typing.Any ) -> typing.List[langchain_core.documents.base.Document]
Return docs selected using the maximal marginal relevance.
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search
similarity_search( query: str, k: typing.Optional[int] = None, filter: typing.Optional[str] = None, **kwargs: typing.Any ) -> typing.List[langchain_core.documents.base.Document]
Return docs most similar to query.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search_by_vector
similarity_search_by_vector( embedding: typing.List[float], k: typing.Optional[int] = None, filter: typing.Optional[str] = None, **kwargs: typing.Any ) -> typing.List[langchain_core.documents.base.Document]
Return docs most similar to embedding vector.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search_by_vector
langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search_with_score
similarity_search_with_score( query: str, k: typing.Optional[int] = None, filter: typing.Optional[str] = None, **kwargs: typing.Any ) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]
Run similarity search with distance.
See more: langchain_google_cloud_sql_pg.vectorstore.PostgresVectorStore.similarity_search_with_score