Skip to content
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 15 additions & 15 deletions project_euler/problem_003/sol1.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,9 +13,11 @@
import math


def is_prime(num: int) -> bool:
"""
Returns boolean representing primality of given number num.
def is_prime(number: int) -> bool:
"""Checks to see if a number is a prime in O(sqrt(n)).
A number is prime if it has exactly two factors: 1 and itself.
Returns boolean representing primality of given number num (i.e., if the
result is true, then the number is indeed prime else it is not).

>>> is_prime(2)
True
Expand All @@ -26,23 +28,21 @@ def is_prime(num: int) -> bool:
>>> is_prime(2999)
True
>>> is_prime(0)
Traceback (most recent call last):
...
ValueError: Parameter num must be greater than or equal to two.
False
>>> is_prime(1)
Traceback (most recent call last):
...
ValueError: Parameter num must be greater than or equal to two.
False
"""

if num <= 1:
raise ValueError("Parameter num must be greater than or equal to two.")
if num == 2:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif num % 2 == 0:
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
for i in range(3, int(math.sqrt(num)) + 1, 2):
if num % i == 0:

# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(number) + 1), 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True

Expand Down
32 changes: 20 additions & 12 deletions project_euler/problem_007/sol1.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,29 +15,37 @@
from math import sqrt


def is_prime(num: int) -> bool:
"""
Determines whether the given number is prime or not
def is_prime(number: int) -> bool:
"""Checks to see if a number is a prime in O(sqrt(n)).
A number is prime if it has exactly two factors: 1 and itself.
Returns boolean representing primality of given number num (i.e., if the
result is true, then the number is indeed prime else it is not).
>>> is_prime(2)
True
>>> is_prime(15)
>>> is_prime(3)
True
>>> is_prime(27)
False
>>> is_prime(29)
>>> is_prime(2999)
True
>>> is_prime(0)
False
>>> is_prime(1)
False
"""

if num == 2:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif num % 2 == 0:
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
else:
sq = int(sqrt(num)) + 1
for i in range(3, sq, 2):
if num % i == 0:
return False

# All primes number are in format of 6k +/- 1
for i in range(5, int(sqrt(number) + 1), 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True


Expand Down
29 changes: 23 additions & 6 deletions project_euler/problem_007/sol2.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,22 +11,39 @@
References:
- https://en.wikipedia.org/wiki/Prime_number
"""
import math


def is_prime(number: int) -> bool:
"""
Determines whether the given number is prime or not
"""Checks to see if a number is a prime in O(sqrt(n)).
A number is prime if it has exactly two factors: 1 and itself.
Returns boolean representing primality of given number num (i.e., if the
result is true, then the number is indeed prime else it is not).
>>> is_prime(2)
True
>>> is_prime(15)
>>> is_prime(3)
True
>>> is_prime(27)
False
>>> is_prime(29)
>>> is_prime(2999)
True
>>> is_prime(0)
False
>>> is_prime(1)
False
"""

for i in range(2, int(number**0.5) + 1):
if number % i == 0:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False

# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(number) + 1), 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True

Expand Down
29 changes: 23 additions & 6 deletions project_euler/problem_007/sol3.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,20 +16,37 @@


def is_prime(number: int) -> bool:
"""
Determines whether a given number is prime or not
"""Checks to see if a number is a prime in O(sqrt(n)).
A number is prime if it has exactly two factors: 1 and itself.
Returns boolean representing primality of given number num (i.e., if the
result is true, then the number is indeed prime else it is not).
>>> is_prime(2)
True
>>> is_prime(15)
>>> is_prime(3)
True
>>> is_prime(27)
False
>>> is_prime(29)
>>> is_prime(2999)
True
>>> is_prime(0)
False
>>> is_prime(1)
False
"""

if number % 2 == 0 and number > 2:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
return all(number % i for i in range(3, int(math.sqrt(number)) + 1, 2))

# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(number) + 1), 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True


def prime_generator():
Expand Down
27 changes: 20 additions & 7 deletions project_euler/problem_010/sol1.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,12 +11,14 @@
- https://en.wikipedia.org/wiki/Prime_number
"""

from math import sqrt
import math


def is_prime(n: int) -> bool:
"""
Returns boolean representing primality of given number num.
def is_prime(number: int) -> bool:
"""Checks to see if a number is a prime in O(sqrt(n)).
A number is prime if it has exactly two factors: 1 and itself.
Returns boolean representing primality of given number num (i.e., if the
result is true, then the number is indeed prime else it is not).

>>> is_prime(2)
True
Expand All @@ -26,13 +28,24 @@ def is_prime(n: int) -> bool:
False
>>> is_prime(2999)
True
>>> is_prime(0)
False
>>> is_prime(1)
False
"""

if 1 < n < 4:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif n < 2 or not n % 2:
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
return not any(not n % i for i in range(3, int(sqrt(n) + 1), 2))

# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(number) + 1), 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True


def solution(n: int = 2000000) -> int:
Expand Down
23 changes: 19 additions & 4 deletions project_euler/problem_010/sol2.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,8 +16,10 @@


def is_prime(number: int) -> bool:
"""
Returns boolean representing primality of given number num.
"""Checks to see if a number is a prime in O(sqrt(n)).
A number is prime if it has exactly two factors: 1 and itself.
Returns boolean representing primality of given number num (i.e., if the
result is true, then the number is indeed prime else it is not).

>>> is_prime(2)
True
Expand All @@ -27,11 +29,24 @@ def is_prime(number: int) -> bool:
False
>>> is_prime(2999)
True
>>> is_prime(0)
False
>>> is_prime(1)
False
"""

if number % 2 == 0 and number > 2:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
return all(number % i for i in range(3, int(math.sqrt(number)) + 1, 2))

# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(number) + 1), 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True


def prime_generator() -> Iterator[int]:
Expand Down
41 changes: 29 additions & 12 deletions project_euler/problem_027/sol1.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,22 +23,39 @@
import math


def is_prime(k: int) -> bool:
"""
Determine if a number is prime
>>> is_prime(10)
def is_prime(number: int) -> bool:
"""Checks to see if a number is a prime in O(sqrt(n)).
A number is prime if it has exactly two factors: 1 and itself.
Returns boolean representing primality of given number num (i.e., if the
result is true, then the number is indeed prime else it is not).

>>> is_prime(2)
True
>>> is_prime(3)
True
>>> is_prime(27)
False
>>> is_prime(11)
>>> is_prime(2999)
True
>>> is_prime(0)
False
>>> is_prime(1)
False
>>> is_prime(-10)
False
"""
if k < 2 or k % 2 == 0:
return False
elif k == 2:

if 1 < number < 4:
# 2 and 3 are primes
return True
else:
for x in range(3, int(math.sqrt(k) + 1), 2):
if k % x == 0:
return False
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False

# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(number) + 1), 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True


Expand Down
51 changes: 36 additions & 15 deletions project_euler/problem_037/sol1.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,7 @@
"""
Truncatable primes
Problem 37: https://projecteuler.net/problem=37

The number 3797 has an interesting property. Being prime itself, it is possible
to continuously remove digits from left to right, and remain prime at each stage:
3797, 797, 97, and 7. Similarly we can work from right to left: 3797, 379, 37, and 3.
Expand All @@ -11,28 +14,46 @@

from __future__ import annotations

seive = [True] * 1000001
seive[1] = False
i = 2
while i * i <= 1000000:
if seive[i]:
for j in range(i * i, 1000001, i):
seive[j] = False
i += 1
import math


def is_prime(n: int) -> bool:
"""
Returns True if n is prime,
False otherwise, for 1 <= n <= 1000000
>>> is_prime(87)
def is_prime(number: int) -> bool:
"""Checks to see if a number is a prime in O(sqrt(n)).

A number is prime if it has exactly two factors: 1 and itself.

>>> is_prime(0)
False
>>> is_prime(1)
False
>>> is_prime(25363)
>>> is_prime(2)
True
>>> is_prime(3)
True
>>> is_prime(27)
False
>>> is_prime(87)
False
>>> is_prime(563)
True
>>> is_prime(2999)
True
>>> is_prime(67483)
False
"""
return seive[n]

if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False

# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(number) + 1), 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True


def list_truncated_nums(n: int) -> list[int]:
Expand Down
Loading