The ML.LP_NORM function
This document describes the ML.LP_NORM scalar function, which lets you compute the Lp norm for a vector, where p is the degree.
Syntax
ML.LP_NORM(vector, degree)
Arguments
ML.LP_NORM has the following arguments:
- vector: an- ARRAY<Numerical type>value that represents a vector, where- Numerical typecan be- BIGNUMERIC,- FLOAT64,- INT64or- NUMERIC. For example- ARRAY<BIGNUMERIC>.- Each element of the array denotes one dimension of the vector. An example of a four-dimensional vector is - [0.0, 1.0, 1.0, 0.0].- The function calculates the p degree norm of the numerical type values in all the values in the array. 
- degree: a- FLOAT64value that specifies the degree. This can be- 0.0, any value >=- 1.0, or- CAST('INF' AS FLOAT64)to return the L_infinity norm of the vector, which is the largest magnitude of the values in the vector.- Commonly used values are - 1.0to calculate the Manhattan norm of the vector and- 2.0to calculate the Euclidean norm of the vector.
Output
ML.LP_NORM returns a FLOAT64 value that represents the Lp norm for the vector. Returns NULL if vector is NULL.
Example
The following example gets the Euclidean norm for vectors consisting of ARRAY<FLOAT64> values:
- Create the table - t1:- CREATE TABLE mydataset.t1 ( v1 ARRAY<FLOAT64>, v2 ARRAY<FLOAT64> ) 
- Populate - t1:- INSERT mydataset.t1 (v1,v2) VALUES ([4.1,0.5,1.0], [3.0,0.0,2.5]) 
- Calculate the Euclidean norm for - v1and- v2:- SELECT v1, ML.LP_NORM(v1, 2.0) AS v1_norm, v2, ML.LP_NORM(v2, 2.0) AS v2_norm FROM mydataset.t1; - This query produces the following output: - +---------------------------+-----+-------------------+ | v1 | v1_norm | v2 | v2_norm | +---------------------------+-----+-------------------+ | 4.1 | 4.2497058721751557 | 3.0 | 3.905124837953327 | +-----| |-----| | | 0.5 | | 0.0 | | +-----| |-----+ | | 1.0 | | 2.5 | | +---------------------------+-----+-------------------+
What's next
- For information about the supported SQL statements and functions for each model type, see End-to-end user journey for each model.